Suppr超能文献

泛加拿大科学课程框架的基线

Baselines for the Pan-Canadian science curriculum framework.

作者信息

Liu Xiufeng

机构信息

Department of Learning and Instruction, State University of New York, Buffalo, NY, USA.

出版信息

J Appl Meas. 2013;14(3):249-61.

Abstract

Using a Canadian student achievement assessment database, the Science Achievement Indicators Program (SAIP), and employing the Rasch partial credit measurement model, this study estimated the difficulties of items corresponding to the learning outcomes in the Pan-Canadian science curriculum framework and the latent abilities of students of grades 7, 8, 10, 11, 12 and OAC (Ontario Academic Course). The above estimates serve as baselines for validating the Pan-Canadian science curriculum framework in terms of the learning progression of learning outcomes and expected mastery of learning outcomes by grades. It was found that there was no statistically significant progression in learning outcomes from grades 4-6 to grades 7-9, and from grades 7-9 to grades 10-12; the curriculum framework sets mastery expectation about 2 grades higher than students' potential abilities. In light of the above findings, this paper discusses theoretical issues related to deciding progression of learning outcomes and setting expectation of student mastery of learning outcomes, and highlights the importance of using national assessment data to establish baselines for the above purposes. This paper concludes with recommendations for further validating the Pan-Canadian science curriculum frameworks.

摘要

本研究利用加拿大学生成绩评估数据库——科学成就指标项目(SAIP),并采用拉施克部分计分测量模型,估算了与泛加拿大科学课程框架中的学习成果相对应的题目难度,以及7、8、10、11、12年级和安大略省学术课程(OAC)学生的潜在能力。上述估算结果为依据学习成果的学习进程以及各年级对学习成果的预期掌握情况来验证泛加拿大科学课程框架提供了基线。研究发现,从4 - 6年级到7 - 9年级,以及从7 - 9年级到10 - 12年级,学习成果在统计学上没有显著进展;课程框架设定的掌握预期比学生的潜在能力高约两个年级。鉴于上述研究结果,本文讨论了与确定学习成果进展和设定学生学习成果掌握预期相关的理论问题,并强调了利用国家评估数据为上述目的建立基线的重要性。本文最后提出了进一步验证泛加拿大科学课程框架的建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验