State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Nanoscale. 2013 Aug 21;5(16):7265-70. doi: 10.1039/c3nr01817b.
Applications of polymeric semiconductors in organic electronics and biosensors depend critically on the nature of energy transfer in these materials. Important questions arise as to how this long-range transport degrades in amorphous condensed solids which are most amenable to low-cost optoelectronic devices and how fast energy transfer could occur. Here, we address these in disordered, densely packed nanoparticles made from green-light-harvesting host polymers (PFBT) and deep-red-emitting dopant polymers (PF-DBT5). By femtosecond selective excitation of donor (BT) units, we study in detail the internal structure-mediated energy transfer to uniformly distributed, seldom acceptor (DBT) units. It has been unambiguously demonstrated that the creation of interchain species is responsible for the limitation of bulk exciton diffusion length in polymer materials. This interchain Förster resonance energy transfer (FRET) becomes a preferred and dominant channel, and near 100% energy transfer efficiency could be achieved at high acceptor concentrations (>10 wt%). Side-chain carboxylic acid groups in functionalized polymer-blend dots slightly slow down the FRET rate, but it could not affect the Förster radius and FRET efficiency. These findings imply that a greater understanding of the role of interchain species could be an efficient approach to improve the cell efficiency.
高分子半导体在有机电子学和生物传感器中的应用,关键取决于这些材料中能量转移的性质。一个重要的问题是,在最适合低成本光电设备的非晶凝聚固体中,这种长程输运会如何退化,以及能量转移会有多快。在这里,我们研究了由绿光收集主链聚合物(PFBT)和深红光发射掺杂聚合物(PF-DBT5)组成的无序、高密度纳米颗粒中的这些问题。通过飞秒选择性激发给体(BT)单元,我们详细研究了内部结构介导的能量转移到均匀分布的、很少的受体(DBT)单元。已经明确证明,链间物种的形成是导致聚合物材料中体激子扩散长度受限的原因。这种链间Förster 共振能量转移(FRET)成为首选和主要通道,在高受体浓度(>10wt%)下,能量转移效率可接近 100%。功能化聚合物共混点中的侧链羧酸基团略微降低了 FRET 速率,但不会影响Förster 半径和 FRET 效率。这些发现表明,对链间物种作用的深入理解可能是提高电池效率的有效途径。