Suppr超能文献

利用药物改变生理网络:迈向个性化生理学的步骤。

Altering physiological networks using drugs: steps towards personalized physiology.

机构信息

Department of Bioengineering, Stanford University, Stanford, CA, USA.

出版信息

BMC Med Genomics. 2013;6 Suppl 2(Suppl 2):S7. doi: 10.1186/1755-8794-6-S2-S7. Epub 2013 May 7.

Abstract

BACKGROUND

The rise of personalized medicine has reminded us that each patient must be treated as an individual. One factor in making treatment decisions is the physiological state of each patient, but definitions of relevant states and methods to visualize state-related physiologic changes are scarce. We constructed correlation networks from physiologic data to demonstrate changes associated with pressor use in the intensive care unit.

METHODS

We collected 29 physiological variables at one-minute intervals from nineteen trauma patients in the intensive care unit of an academic hospital and grouped each minute of data as receiving or not receiving pressors. For each group we constructed Spearman correlation networks of pairs of physiologic variables. To visualize drug-associated changes we split the networks into three components: an unchanging network, a network of connections with changing correlation sign, and a network of connections only present in one group.

RESULTS

Out of a possible 406 connections between the 29 physiological measures, 64, 39, and 48 were present in each of the three component networks. The static network confirms expected physiological relationships while the network of associations with changed correlation sign suggests putative changes due to the drugs. The network of associations present only with pressors suggests new relationships that could be worthy of study.

CONCLUSIONS

We demonstrated that visualizing physiological relationships using correlation networks provides insight into underlying physiologic states while also showing that many of these relationships change when the state is defined by the presence of drugs. This method applied to targeted experiments could change the way critical care patients are monitored and treated.

摘要

背景

个性化医疗的兴起提醒我们,每位患者都必须被视为个体。在做出治疗决策时,一个因素是每位患者的生理状态,但相关状态的定义和可视化与状态相关的生理变化的方法却很少。我们构建了相关网络,从生理数据中展示与加压素在重症监护病房中使用相关的变化。

方法

我们从学术医院的重症监护病房中的 19 位创伤患者那里收集了每一分钟的 29 个生理变量,并将每一分钟的数据分为接受或不接受加压素的组。对于每组,我们构建了生理变量对的 Spearman 相关网络。为了可视化与药物相关的变化,我们将网络分为三个组成部分:不变网络、具有变化相关符号的连接网络和仅存在于一个组中的连接网络。

结果

在 29 种生理测量之间可能存在的 406 种连接中,每个组成网络中分别存在 64、39 和 48 种连接。静态网络证实了预期的生理关系,而关联网络的相关符号变化则表明由于药物可能导致了潜在的变化。仅在加压素存在时出现的关联网络提示了可能值得研究的新关系。

结论

我们证明,使用相关网络可视化生理关系可以深入了解潜在的生理状态,同时表明,当状态由药物存在定义时,许多这些关系都会发生变化。这种方法应用于靶向实验可能会改变重症监护患者的监测和治疗方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e16/3654899/3218b485b559/1755-8794-6-S2-S7-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验