Istituto di Medicina Interna e Geriatria, Servizio Malattie Emorragiche e Trombotiche, Facoltà di Medicina e Chirurgia, Università Cattolica S. Cuore, Roma, Italy.
J Thromb Haemost. 2013 Sep;11(9):1688-98. doi: 10.1111/jth.12346.
Shear stress triggers conformational stretching of von Willebrand factor (VWF), which is responsible for its self-association and binding to the platelet receptor glycoprotein (GP)Ibα. This phenomenon supports primary hemostasis under flow. Type 2B VWF natural mutants are considered to have increased affinity for platelet GPIbα.
To assess the mechanism responsible for the enhanced interaction of the p.R1306W VWF mutant with the platelet receptor.
The interaction of GPIbα with wild-type (WT) and p.R1306W VWF multimers and A1-A2-A3 constructs was investigated with surface plasmon resonance spectroscopy. Analysis of the static VWF conformation in solution was performed with dynamic light scattering spectroscopy. The shear stress-induced self-association of VWF multimers was investigated with atomic force microscopy (AFM) over a 0-60 dyn cm(-2) range.
WT VWF did not interact with GPIbα under static conditions, whereas the mutant at ~ 2 μg mL(-1) already bound to the receptor. By contrast, the WT and p.R1306W-A1-A2-A3 constructs showed comparable affinities for GPIbα (Kd ~ 20 nm). The hydrodynamic diameter of resting R1306W VWF multimers was significantly greater than that of the wild type (210 ± 60 nm vs. 87 ± 22 nm). At shear forces of < 14 dyn cm(-2) , the p.R1306W multimers rapidly changed conformation, entering a regime of self-aggregation, which, in contrast, was induced for WT VWF by shear forces of > 30 dyn cm(-2) . Mechanical stretching AFM experiments showed that p.R1306W multimers needed less energy per length unit (~ 10 pN) to be stretched than the WT protein.
The increased affinity of p.R1306W VWF for GPIbα arises mostly from higher sensitivity to shear stress, which facilitates exposure of GPIbα binding sites.
切应力触发 von Willebrand 因子(VWF)构象拉伸,这使其能够自我缔合并与血小板受体糖蛋白(GP)Ibα结合。这种现象支持流动条件下的初级止血。2B 型 VWF 天然突变体被认为与血小板 GPIbα的亲和力增加。
评估导致 p.R1306W VWF 突变体与血小板受体相互作用增强的机制。
使用表面等离子体共振光谱法研究 GPIbα与野生型(WT)和 p.R1306W VWF 多聚体和 A1-A2-A3 构建体的相互作用。使用动态光散射光谱法分析溶液中静态 VWF 构象。使用原子力显微镜(AFM)在 0-60 dyn cm(-2) 范围内研究 VWF 多聚体在切应力下的自缔合。
WT VWF 在静态条件下不与 GPIbα相互作用,而突变体在约 2μg mL(-1) 时已经与受体结合。相比之下,WT 和 p.R1306W-A1-A2-A3 构建体对 GPIbα具有相似的亲和力(Kd ~20nm)。静息 R1306W VWF 多聚体的水动力直径明显大于野生型(210 ±60nm 对 87 ±22nm)。在切应力 <14 dyn cm(-2)时,p.R1306W 多聚体迅速改变构象,进入自我聚集状态,而 WT VWF 在切应力 >30 dyn cm(-2)时才被诱导进入这种状态。机械拉伸 AFM 实验表明,p.R1306W 多聚体每单位长度所需的能量(约 10pN)小于 WT 蛋白。
p.R1306W VWF 对 GPIbα的亲和力增加主要源于对切应力的更高敏感性,这有利于暴露 GPIbα 结合位点。