Suppr超能文献

吉布斯方程在空气/水界面处应用于阴离子表面活性剂时的局限性:CMC 以上和以下的十二烷基硫酸钠和十二烷基单乙氧基硫酸盐。

Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and below the CMC.

机构信息

Physical and Theoretical Chemistry Laboratory, South Parks Road, University of Oxford, Oxford OX1 3QZ, UK.

出版信息

Langmuir. 2013 Jul 30;29(30):9335-51. doi: 10.1021/la401835d. Epub 2013 Jul 16.

Abstract

This is a second paper responding to recent papers by Menger et al. and the ensuing discussion about the application of the Gibbs equation to surface tension (ST) data. Using new neutron reflection (NR) measurements on sodium dodecylsulfate (SDS) and sodium dodecylmonooxyethylene sulfate (SLES) above and below their CMCs and with and without added NaCl, in conjunction with the previous ST measurements on SDS by Elworthy and Mysels (EM), we conclude that (i) ST measurements are often seriously compromised by traces of divalent ions, (ii) adsorption does not generally reach saturation at the CMC, making it difficult to obtain the limiting Gibbs slope, and (iii) the significant width of micellization may make it impossible to apply the Gibbs equation in a significant range of concentration below the CMC. Menger et al. proposed ii as a reason for the difficulty of applying the Gibbs equation to ST data. Conclusions i and iii now further emphasize the failings of the ST-Gibbs analysis for determining the limiting coverage at the CMC, especially for SDS. For SDS, adsorption increases above the CMC to a value of 10 × CMC, which is about 25% greater than at the CMC and about the same as at the CMC in the presence of 0.1 M NaCl. In contrast, the adsorption of SLES reaches a limit at the CMC with no further increase up to 10 × CMC, but the addition of 0.1 M NaCl increases the surface excess by 20-25%. The results for SDS are combined with earlier NR results to generate an adsorption isotherm from 2 to 100 mM. The NR results for SDS are compared to the definitive surface tension (ST) measurements of EM, and the surface excesses agree over the range where they can safely be compared, from 2 to 6 mM. This confirms that the anomalous decrease in the slope of EM's σ - ln c curve between 6 mM and the CMC at 8.2 mM results from changes in activity associated with a significant width of micellization. This anomaly shows that it is impossible to apply the Gibbs equation usefully from 6 to 8.2 mM (i.e., the lack of knowledge of the activity in this range is the same as above the CMC (8.2 mM)). It was found that a mislabeling of the original data in EM may have prevented the use of this excellent ST data as a standard by other authors. Although NR and ST results for SDS in the absence of added electrolyte show that the discrepancies can be rationalized, ST is generally shown to be less accurate and more vulnerable to impurities, especially divalent ions, than NR. The radiotracer technique is shown to be less accurate than ST-Gibbs in that the four radiotracer measurements of the surface excess are consistent neither with each other nor with ST and NR. It is also shown that radiotracer results on aerosol-OT are likely to be incorrect. Application of the mass action (MA) model of micellization to the ST curves of SDS and SLES through and above the CMC shows that they can be explained by this model and that they depend on the degree of dissociation of the micelle, which leads to a larger change in the mean activity, and hence the adsorption, for the more highly dissociated SDS micelles than for SLES. Previous measurements of the activity of SDS above the CMC were found to be semiquantitatively consistent with the change in mean activity predicted by the MA model but inconsistent with the combined ST, NR, and Gibbs equation results.

摘要

这是对 Menger 等人最近的论文以及随后关于 Gibbs 方程在表面张力 (ST) 数据应用的讨论的第二篇回应。使用新的中子反射 (NR) 测量在十二烷基硫酸钠 (SDS) 和十二烷基单氧乙烯硫酸盐 (SLES) 的 CMC 以上和以下,以及是否添加 NaCl,结合 Elworthy 和 Mysels (EM) 之前对 SDS 的 ST 测量,我们得出结论:(i) ST 测量经常受到痕量二价离子的严重影响,(ii) 吸附通常在 CMC 处未达到饱和,难以获得极限 Gibbs 斜率,以及 (iii) 胶束化的显著宽度可能使 Gibbs 方程在 CMC 以下的浓度范围内无法应用。Menger 等人提出(ii) 是 Gibbs 方程难以应用于 ST 数据的原因之一。现在,结论 i 和 iii 进一步强调了 ST-Gibbs 分析确定 CMC 处极限覆盖率的失败,特别是对于 SDS。对于 SDS,吸附在 CMC 以上增加到 10×CMC 的值,比 CMC 处增加 25%,与 0.1 M NaCl 存在时的 CMC 处增加相同。相比之下,SLES 的吸附在 CMC 处达到极限,在 10×CMC 处没有进一步增加,但添加 0.1 M NaCl 会使表面过剩增加 20-25%。SDS 的结果与早期的 NR 结果相结合,从 2 到 100 mM 生成吸附等温线。NR 结果与 EM 的明确 ST 测量结果进行了比较,并且在可以安全比较的范围内,即从 2 到 6 mM,表面过剩是一致的。这证实了 EM 的 σ-ln c 曲线斜率在 6 mM 到 8.2 mM CMC 之间的异常下降是由于与胶束化的显著宽度相关的活度变化所致。这种异常表明,从 6 到 8.2 mM(即,在此范围内缺乏对活度的了解与 CMC 以上相同(8.2 mM)),无法有用地应用 Gibbs 方程。发现 EM 原始数据的标签错误可能阻止了其他作者将这些优秀的 ST 数据用作标准。尽管 SDS 在没有添加电解质的情况下的 NR 和 ST 结果表明可以合理化这些差异,但 ST 通常比 NR 更不准确,更容易受到杂质(尤其是二价离子)的影响。示踪技术被证明不如 ST-Gibbs 准确,因为四个表面过剩的示踪剂测量结果彼此不一致,也与 ST 和 NR 不一致。还表明气溶胶-OT 的示踪剂结果可能不正确。将胶束化的质量作用 (MA) 模型应用于 SDS 和 SLES 的 ST 曲线通过和超过 CMC,表明它们可以用该模型解释,并且它们取决于胶束的离解程度,这导致平均活度的更大变化,从而导致 SDS 胶束比 SLES 胶束具有更大的吸附。先前对 SDS 在 CMC 以上的活度的测量结果被发现与 MA 模型预测的平均活度变化在半定量上一致,但与 ST、NR 和 Gibbs 方程的综合结果不一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验