Department of Health Sciences Research, Mayo College of Medicine, Rochester, Minnesota;
Am J Physiol Endocrinol Metab. 2013 Aug 15;305(4):E557-66. doi: 10.1152/ajpendo.00182.2013. Epub 2013 Jul 2.
Quantifying the effect size of acute exercise on insulin sensitivity (SI(exercise)) and simultaneous measurement of glucose disappearance (R(d)), endogenous glucose production (EGP), and meal glucose appearance in the postprandial state has not been developed in humans. To do so, we studied 12 healthy subjects [5 men, age 37.1 ± 3.1 yr, body mass index 24.1 ± 1.1 kg/m², fat-free mass (FFM) 50.9 ± 3.9 kg] during moderate exercise at 50% V(O₂max) for 75 min, 120-195 min after a triple-tracer mixed meal consumed at time 0. Tracer infusion rates were adjusted to achieve constant tracer-to-tracee ratio and minimize non-steady-state errors. Glucose turnover was estimated by accounting for the nonstationary kinetics introduced by exercise. Insulin sensitivity index was calculated in each subject both in the absence [time (t) = 0-120 min, SI(rest)] and presence (t = 0-360 min, SI(exercise)) of physical activity. EGP at t = 0 min (13.4 ± 1.1 μM·kg FFM⁻¹·min⁻¹) fell at t = 120 min (2.4 ± 0.4 μM·kg FFM⁻¹·min⁻¹) and then rapidly rose almost eightfold at t = 180 min (18.2 ± 2.6 μM·kg FFM⁻¹·min⁻¹) before gradually falling at t = 360 min (10.6 ± 0.9 μM·kg FFM⁻¹·min⁻¹). R(d) rapidly peaked at t = 120 min at the start of exercise (89.5 ± 11.6 μM·kg FFM⁻¹·min⁻¹) and then gradually declined at t = 195 min (26.4 ± 3.3 μM·kg FFM⁻¹·min⁻¹) before returning to baseline at t = 360 min. SI(exercise) was significantly higher than SI(rest) (21.6 ± 3.7 vs. 12.5 ± 2.0 10⁻⁴ dl·kg⁻¹·min⁻¹ per μU/ml, P < 0.0005). Glucose turnover was estimated for the first time during exercise with the triple-tracer technique. Our results, applying state-of-the-art techniques, show that moderate exercise almost doubles postprandial insulin sensitivity index in healthy subjects.
在人体中,尚未开发出定量测定急性运动对胰岛素敏感性(SI(exercise))的效应大小以及同时测量葡萄糖清除率(R(d))、内源性葡萄糖生成(EGP)和餐后状态下的膳食葡萄糖摄取的方法。为了实现这一目标,我们在 12 名健康受试者(5 名男性,年龄 37.1 ± 3.1 岁,体重指数 24.1 ± 1.1 kg/m²,去脂体重(FFM) 50.9 ± 3.9 kg)中进行了研究,这些受试者在摄入三重示踪混合餐后 120-195 分钟时,以 50% V(O₂max)的强度进行 75 分钟的中度运动。示踪剂输注率进行了调整,以达到恒定的示踪剂与示踪物的比值,并将非稳态误差降至最低。通过考虑运动引起的非稳态动力学,对葡萄糖周转率进行了估计。在没有(t = 0-120 分钟,SI(rest))和存在(t = 0-360 分钟,SI(exercise))体力活动的情况下,在每个受试者中计算了胰岛素敏感性指数。EGP 在 t = 0 分钟(13.4 ± 1.1 μM·kg FFM⁻¹·min⁻¹)下降到 t = 120 分钟(2.4 ± 0.4 μM·kg FFM⁻¹·min⁻¹),然后在 t = 180 分钟时迅速上升近 8 倍(18.2 ± 2.6 μM·kg FFM⁻¹·min⁻¹),然后在 t = 360 分钟时逐渐下降(10.6 ± 0.9 μM·kg FFM⁻¹·min⁻¹)。R(d)在运动开始时(t = 120 分钟)迅速达到峰值(89.5 ± 11.6 μM·kg FFM⁻¹·min⁻¹),然后在 t = 195 分钟时逐渐下降(26.4 ± 3.3 μM·kg FFM⁻¹·min⁻¹),然后在 t = 360 分钟时恢复到基线。SI(exercise)明显高于 SI(rest)(21.6 ± 3.7 与 12.5 ± 2.0 10⁻⁴ dl·kg⁻¹·min⁻¹ per μU/ml,P < 0.0005)。首次应用三重示踪技术在运动中估计了葡萄糖周转率。我们的结果应用了最先进的技术,表明在健康受试者中,中等强度的运动几乎使餐后胰岛素敏感性指数增加了一倍。