Beijing National Laboratory for Molecular Science, Key Laboratory of Colloids and Surface, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China.
ACS Appl Mater Interfaces. 2013 Aug 14;5(15):6886-92. doi: 10.1021/am401006b. Epub 2013 Jul 17.
Gold nanodendrites with a long and densely branched morphology were fabricated by a seed-mediated method in a solution containing gold nanoparticles (AuNPs), bis(amidoethyl-carbamoylethyl)octadecylamine (C18N3), HAuCl4, and the reducing agent ascorbic acid (AA). The length and density of the branches could be mediated by changing the AuNP seed and AA concentrations. The amphiphilic C18N3 molecules function as a template and induce the unique morphology of the AuNPs/C18N3 structures. The localized surface plasmon resonance (LSPR) peaks of the gold nanodendrites can be modulated from the visible (∼530 nm) to the near-infrared region (∼1100 nm) of the electromagnetic spectrum. Surface-enhanced Raman scattering (SERS) signals using rhodamine can also be mediated by changing the seed and AA concentrations. These unique highly branched gold nanodendrites with a narrow size distribution and tunable NIR and SERS spectra should have great potential in sensing applications.
通过在含有金纳米粒子(AuNPs)、双(酰胺乙基-氨甲酰基乙基)十八烷基胺(C18N3)、HAuCl4 和还原剂抗坏血酸(AA)的溶液中采用种子介导的方法,制备出具有长而密集分支形态的金纳米树突。通过改变 AuNP 种子和 AA 浓度,可以调节分支的长度和密度。两亲性 C18N3 分子作为模板,诱导 AuNPs/C18N3 结构的独特形态。金纳米树突的局域表面等离子体共振(LSPR)峰可以从电磁光谱的可见区(约 530nm)调节到近红外区(约 1100nm)。通过改变种子和 AA 浓度,也可以调节使用罗丹明的表面增强拉曼散射(SERS)信号。这些具有窄尺寸分布和可调近红外和 SERS 光谱的独特高分支金纳米树突在传感应用中应该具有很大的潜力。