Suppr超能文献

宿主细胞器劫持者:刚地弓形虫和沙眼衣原体的类似作用机制:共感染模型作为研究发病机制的工具。

Host Organelle Hijackers: a similar modus operandi for Toxoplasma gondii and Chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis.

机构信息

Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

Pathog Dis. 2013 Nov;69(2):72-86. doi: 10.1111/2049-632X.12057. Epub 2013 Jul 22.

Abstract

The bacterium Chlamydia trachomatis and the protozoan parasite Toxoplasma gondii are the causative agents of chlamydiosis and toxoplasmosis in humans, respectively. Both microorganisms are obligate intracellular pathogens and notorious for extensively modifying the cytoskeletal architecture and the endomembrane system of their host cells to establish productive infections. This review highlights the similar tactics developed by these two pathogens to manipulate their host cell despite their genetic unrelatedness. Using an in vitro cell culture model whereby single fibroblasts are infected by C. trachomatis and T. gondii simultaneously, thus setting up an intracellular competition, we demonstrate that the solutions to the problem of intracellular survival deployed by the parasite and the bacterium may represent an example of convergent evolution, driven by the necessity to acquire nutrients in a hostile environment.

摘要

细菌沙眼衣原体和原生动物寄生虫刚地弓形虫分别是人类衣原体病和弓形体病的病原体。这两种微生物都是专性细胞内病原体,以广泛修饰宿主细胞的细胞骨架结构和内膜系统以建立有性感染而臭名昭著。这篇综述强调了尽管这两种病原体在遗传上没有关系,但它们开发出了相似的策略来操纵宿主细胞。我们使用体外细胞培养模型,其中单个成纤维细胞同时被沙眼衣原体和刚地弓形虫感染,从而建立细胞内竞争,证明寄生虫和细菌在细胞内生存中部署的解决方案可能代表趋同进化的一个例子,这种进化是由在恶劣环境中获取营养的必要性所驱动的。

相似文献

2
Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.
Eukaryot Cell. 2013 Feb;12(2):265-77. doi: 10.1128/EC.00313-12. Epub 2012 Dec 14.
4
Association between intracellular infectious agents and Tourette's syndrome.
Eur Arch Psychiatry Clin Neurosci. 2010 Jun;260(4):359-63. doi: 10.1007/s00406-009-0084-3. Epub 2009 Nov 5.
5
Identification of Toxoplasma gondii genes responsive to the host immune response during in vivo infection.
PLoS One. 2012;7(10):e46621. doi: 10.1371/journal.pone.0046621. Epub 2012 Oct 10.
6
Broad recruitment of mGBP family members to Chlamydia trachomatis inclusions.
PLoS One. 2017 Sep 25;12(9):e0185273. doi: 10.1371/journal.pone.0185273. eCollection 2017.
9
Kiss and spit: the dual roles of Toxoplasma rhoptries.
Nat Rev Microbiol. 2008 Jan;6(1):79-88. doi: 10.1038/nrmicro1800.
10

引用本文的文献

1
The critical role of GRA1 in nutrient salvage.
mBio. 2025 Jun 27:e0124225. doi: 10.1128/mbio.01242-25.
2
Transcriptomic and metabolomic analyses reveal the essential nature of Rab1B in Toxoplasma gondii.
Parasit Vectors. 2023 Nov 8;16(1):409. doi: 10.1186/s13071-023-06030-6.
3
The life-cycle of Toxoplasma gondii reviewed using animations.
Parasit Vectors. 2020 Nov 23;13(1):588. doi: 10.1186/s13071-020-04445-z.
4
Mechanisms for Delivery of Proteins and Uptake of Nutrients Across the Host-Pathogen Interface.
Annu Rev Microbiol. 2020 Sep 8;74:567-586. doi: 10.1146/annurev-micro-011720-122318. Epub 2020 Jul 17.
5
Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress.
PLoS Negl Trop Dis. 2019 Mar 20;13(3):e0007218. doi: 10.1371/journal.pntd.0007218. eCollection 2019 Mar.
6
Modelling Toxoplasma gondii infection in a 3D cell culture system In Vitro: Comparison with infection in 2D cell monolayers.
PLoS One. 2018 Dec 6;13(12):e0208558. doi: 10.1371/journal.pone.0208558. eCollection 2018.
8
Lipid Droplet, a Key Player in Host-Parasite Interactions.
Front Immunol. 2018 May 23;9:1022. doi: 10.3389/fimmu.2018.01022. eCollection 2018.
9
Hostile intruder: Toxoplasma holds host organelles captive.
PLoS Pathog. 2018 Mar 29;14(3):e1006893. doi: 10.1371/journal.ppat.1006893. eCollection 2018 Mar.
10
The Expressed MicroRNA-mRNA Interactions of .
Front Microbiol. 2018 Jan 4;8:2630. doi: 10.3389/fmicb.2017.02630. eCollection 2017.

本文引用的文献

2
Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs.
Infect Agent Cancer. 2013 Feb 8;8(1):8. doi: 10.1186/1750-9378-8-8.
3
Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.
Eukaryot Cell. 2013 Feb;12(2):265-77. doi: 10.1128/EC.00313-12. Epub 2012 Dec 14.
4
Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.
J Bacteriol. 2013 Feb;195(4):708-16. doi: 10.1128/JB.01768-12. Epub 2012 Nov 30.
6
Chlamydiae assemble a pathogen synapse to hijack the host endoplasmic reticulum.
Traffic. 2012 Dec;13(12):1612-27. doi: 10.1111/tra.12002. Epub 2012 Sep 11.
7
CPAF: a Chlamydial protease in search of an authentic substrate.
PLoS Pathog. 2012;8(8):e1002842. doi: 10.1371/journal.ppat.1002842. Epub 2012 Aug 2.
8
Chlamydia trachomatis vacuole maturation in infected macrophages.
J Leukoc Biol. 2012 Oct;92(4):815-27. doi: 10.1189/jlb.0711336. Epub 2012 Jul 17.
9
Chlamydial infection induces host cytokinesis failure at abscission.
Cell Microbiol. 2012 Oct;14(10):1554-67. doi: 10.1111/j.1462-5822.2012.01820.x. Epub 2012 Jun 19.
10
Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion.
J Cell Sci. 2012 Sep 15;125(Pt 18):4333-42. doi: 10.1242/jcs.103648. Epub 2012 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验