Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Ultramicroscopy. 2013 Nov;134:207-13. doi: 10.1016/j.ultramic.2013.05.004. Epub 2013 May 22.
The atomic structure and interfaces of CdS/Cu2S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu2S exhibits a low-chalcocite structure in pristine CdS/Cu2S nanorods. Under electron beam irradiation the Cu2S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu(+)-Cd(2+) cation exchange at the CdS/Cu2S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper-cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu2S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3-10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu2S thin film solar cells with an activation energy of 0.96 eV.
采用校正像差的 TEAM0.5 电子显微镜,在 80kV 和 300kV 下,利用电子束中的同轴全息和互补技术,对 CdS/Cu2S 异质结构纳米棒的原子结构和界面进行了研究。在原始的 CdS/Cu2S 纳米棒中,Cu2S 表现出低辉铜矿结构。在电子束辐照下,Cu2S 相转变为高辉铜矿相,而 CdS 相保持其纤锌矿结构。时间分辨实验表明,在 CdS/Cu2S 界面处的 Cu(+)-Cd(2+)阳离子交换受到电子束的刺激,并在未受干扰和相干的硫亚晶格内进行。改变电子束电流为控制和利用这种不可逆的固态化学过程提供了一种有效的方法,这种过程提供了关于原子尺度上系统动力学的独特信息。具体来说,我们表明,电子束诱导的铜-镉交换是特定位置和各向异性的。由束致阳离子互扩散引起的 CdS/Cu2S 界面的位移,与在具有 0.96eV 激活能的异质结构 CdS/Cu2S 薄膜太阳能电池中,先前报道的铜扩散长度测量值相差 3-10 倍。