School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 1):158-163. doi: 10.1016/j.jcis.2021.09.190. Epub 2021 Oct 1.
Herein, CuS as the outer shell is grown on CdS nanorods (NRs) to construct rod-shell nanostructures (CdS/CuS) by a rapid, scalable and facile cation exchange reaction. The CdS NRs are firstly synthesized by a hydrothermal route, in which thiourea as the precursor of sulfur and ethylenediamine (EDA) as the solvent. And then, the outer shells of CdS NRs are successfully exchanged by CuS via a cation exchange reaction. The obtained CdS/CuS rod-shell NRs exhibit much enhanced activity of hydrogen production (640.95 μmol h g) in comparison with pure CdS NRs (74.1 μmol h g) and pure CuS NRs (0 μmol h g). The enhanced photocatalytic activity of CdS/CuS rod-shell NRs owns to the following points: i) the photogenerated electrons generated by CdS quickly migrate to CuS without any barrier due to rod-shell structure by the in-situ cation exchange reaction, a decreased carrier recombination is achieved; ii) CuS as outer shells broaden the light absorption range of CdS/CuS rod-shell NRs into visible or even NIR light, which can produce more electrons and holes. This work inspires people to further study the rod-shell structured photocatalyst through the cation exchange strategy to further solar energy conversion.
在此,通过快速、可扩展且简便的阳离子交换反应,将 CuS 作为外壳生长在 CdS 纳米棒(NRs)上,构建了棒壳纳米结构(CdS/CuS)。CdS NRs 首先通过水热法合成,其中硫脲作为硫的前体,乙二胺(EDA)作为溶剂。然后,通过阳离子交换反应成功地将 CdS NRs 的外壳交换为 CuS。与纯 CdS NRs(74.1 μmol h g)和纯 CuS NRs(0 μmol h g)相比,所得的 CdS/CuS 棒壳 NRs 在制氢方面表现出更高的活性(640.95 μmol h g)。CdS/CuS 棒壳 NRs 的增强光催化活性归因于以下几点:i)由于原位阳离子交换反应的棒壳结构,CdS 产生的光生电子迅速迁移到 CuS 中,没有任何障碍,从而实现了载流子复合的减少;ii)CuS 作为外壳拓宽了 CdS/CuS 棒壳 NRs 的光吸收范围到可见光甚至近红外光,这可以产生更多的电子和空穴。这项工作启发人们通过阳离子交换策略进一步研究棒壳结构的光催化剂,以进一步实现太阳能转换。