Suppr超能文献

应变压电材料表面压电化学过程的基础分析。

Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.

机构信息

Department of Materials Science and Engineering, University of Wisconsin-Madison, USA.

出版信息

Sci Rep. 2013;3:2160. doi: 10.1038/srep02160.

Abstract

Recently, the strain state of a piezoelectric electrode has been found to impact the electrochemical activity taking place between the piezoelectric material and its solution environment. This effect, dubbed piezocatalysis, is prominent in piezoelectric materials because the strain state and electronic state of these materials are strongly coupled. Herein we develop a general theoretical analysis of the piezocatalysis process utilizing well-established piezoelectric, semiconductor, molecular orbital and electrochemistry frameworks. The analysis shows good agreement with experimental results, reproducing the time-dependent voltage drop and H₂ production behaviors of an oscillating piezoelectric Pb(Mg₁/₃Nb₂/₃)O₃-32PbTiO₃ (PMN-PT) cantilever in deionized water environment. This study provides general guidance for future experiments utilizing different piezoelectric materials, such as ZnO, BaTiO₃, PbTiO₃, and PMN-PT. Our analysis indicates a high piezoelectric coupling coefficient and a low electrical conductivity are desired for enabling high electrochemical activity; whereas electrical permittivity must be optimized to balance piezoelectric and capacitive effects.

摘要

最近,人们发现压电电极的应变状态会影响压电材料与其溶液环境之间发生的电化学活性。这种效应被称为压电化学,在压电材料中尤为明显,因为这些材料的应变状态和电子状态是强烈耦合的。在此,我们利用已建立的压电、半导体、分子轨道和电化学框架,对压电化学过程进行了一般理论分析。该分析与实验结果吻合较好,重现了在去离子水环境中振荡的压电 Pb(Mg₁/₃Nb₂/₃)O₃-32PbTiO₃ (PMN-PT) 悬臂的随时间变化的电压降和 H₂ 生成行为。本研究为未来利用不同压电材料(如 ZnO、BaTiO₃、PbTiO₃ 和 PMN-PT)的实验提供了一般性指导。我们的分析表明,为了实现高电化学活性,需要高的压电耦合系数和低的电导率;而介电常数必须优化以平衡压电和电容效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f769/3703609/15dd6a33f1d2/srep02160-f1.jpg

相似文献

2
An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials.
Small. 2023 Nov;19(44):e2303586. doi: 10.1002/smll.202303586. Epub 2023 Jun 29.
4
PMN-PT nanowires with a very high piezoelectric constant.
Nano Lett. 2012 May 9;12(5):2238-42. doi: 10.1021/nl204334x. Epub 2012 Apr 15.
5
Thickness Dependent Properties of Relaxor-PbTiO(3) Ferroelectrics for Ultrasonic Transducers.
Adv Funct Mater. 2010 Sep 23;20(18):3154-3162. doi: 10.1002/adfm.201000390.
6
Scaling effects of relaxor-PbTiO(3) crystals and composites for high frequency ultrasound.
J Appl Phys. 2010 Jun 15;107(12):124107. doi: 10.1063/1.3437068. Epub 2010 Jun 24.
8
Giant piezoelectricity on Si for hyperactive MEMS.
Science. 2011 Nov 18;334(6058):958-61. doi: 10.1126/science.1207186.
9
Electromechanical properties of Pb(In(1∕2)Nb(1∕2))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) single crystals.
J Appl Phys. 2011 Jan 1;109(1):14108. doi: 10.1063/1.3530617. Epub 2011 Jan 7.

引用本文的文献

1
Breaking the Perfluorooctane Sulfonate Chain: Piezocatalytic Decomposition of PFOS Using BaTiO Nanoparticles.
Small Sci. 2024 Aug 28;4(12):2400337. doi: 10.1002/smsc.202400337. eCollection 2024 Dec.
2
Subsurface Oxygen Vacancy Mediated Surface Reconstruction and Depolarization of Ferroelectric BaTiO (001) Surface.
Adv Sci (Weinh). 2025 Apr;12(16):e2412781. doi: 10.1002/advs.202412781. Epub 2025 Feb 13.
3
Boosting Piezocatalytic Performance of BaTiO by Tuning Defects at Room Temperature.
Nanomaterials (Basel). 2024 Jan 29;14(3):276. doi: 10.3390/nano14030276.
4
Stress-activated friction in sheared suspensions probed with piezoelectric nanoparticles.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2310088120. doi: 10.1073/pnas.2310088120. Epub 2023 Nov 28.
5
Self-Cleaning Bending Sensors Based on Semitransparent ZnO Nanostructured Films.
ACS Appl Eng Mater. 2023 May 3;1(5):1384-1396. doi: 10.1021/acsaenm.3c00082. eCollection 2023 May 26.
6
Polarisation tuneable piezo-catalytic activity of Nb-doped PZT with low Curie temperature for efficient CO reduction and H generation.
Nanoscale Adv. 2021 Feb 15;3(5):1362-1374. doi: 10.1039/d1na00013f. eCollection 2021 Mar 9.
7
X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite.
Sensors (Basel). 2022 May 20;22(10):3886. doi: 10.3390/s22103886.
9
10
Piezoelectric ABC Compounds and Their Nanocomposites for Energy Harvesting and Sensors: A Review.
Materials (Basel). 2021 Nov 18;14(22):6973. doi: 10.3390/ma14226973.

本文引用的文献

1
Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell.
Nano Lett. 2012 Sep 12;12(9):5048-54. doi: 10.1021/nl302879t. Epub 2012 Aug 9.
2
Piezopotential-driven redox reactions at the surface of piezoelectric materials.
Angew Chem Int Ed Engl. 2012 Jun 11;51(24):5962-6. doi: 10.1002/anie.201201424. Epub 2012 May 3.
3
Semiconductor-based photocatalytic hydrogen generation.
Chem Rev. 2010 Nov 10;110(11):6503-70. doi: 10.1021/cr1001645.
4
Size dependence of Young's modulus in ZnO nanowires.
Phys Rev Lett. 2006 Feb 24;96(7):075505. doi: 10.1103/PhysRevLett.96.075505. Epub 2006 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验