Veciana Andrea, Steiner Sarah, Tang Qiao, Pustovalov Vitaly, Llacer-Wintle Joaquin, Wu Jiang, Chen Xiang-Zhong, Manyiwa Trust, Ultra Venecio U, Garcia-Cirera Beltzane, Puigmartí-Luis Josep, Franco Carlos, Janssen David J, Nyström Laura, Boulos Samy, Pané Salvador
Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 CH 8092 Zurich Switzerland.
Institute of Optoelectronics State Key Laboratory of Photovoltaic Science and Technology Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception International Institute of Intelligent Nanorobots and Nanosystems Fudan University Shanghai 200433 P. R. China.
Small Sci. 2024 Aug 28;4(12):2400337. doi: 10.1002/smsc.202400337. eCollection 2024 Dec.
Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and health risks due to their ubiquitous presence and persistence in water systems. Herein, the efficacy of piezocatalysis using barium titanate nanoparticles under ultrasound irradiation for the degradation and defluorination of perfluorooctane sulfonate (PFOS) in water is investigated. The research demonstrates a substantial 90.5% degradation and 29% defluorination of PFOS after 6 h of treatment, highlighting the potential of piezocatalysis as a promising approach for PFAS degradation. Additionally, the quantification of degradation products elucidates the transformation pathways of PFOS, suggesting a stepwise chain-shortening mechanism. The findings underscore the importance of continued research in optimizing piezocatalytic processes and exploring synergistic approaches with other advanced oxidation methods to effectively address PFAS contamination challenges. These efforts are essential for advancing sustainable water treatment strategies and mitigating the environmental and health hazards associated with PFAS contamination.
全氟和多氟烷基物质(PFAS)因其在水系统中普遍存在且持久存在而带来重大的环境和健康风险。在此,研究了在超声辐照下使用钛酸钡纳米颗粒进行压电催化对水中全氟辛烷磺酸(PFOS)的降解和脱氟效果。研究表明,处理6小时后,PFOS有90.5%的显著降解和29%的脱氟,突出了压电催化作为一种有前景的PFAS降解方法的潜力。此外,对降解产物的定量阐明了PFOS的转化途径,表明存在逐步链缩短机制。这些发现强调了持续研究优化压电催化过程以及探索与其他高级氧化方法的协同方法以有效应对PFAS污染挑战的重要性。这些努力对于推进可持续水处理策略以及减轻与PFAS污染相关的环境和健康危害至关重要。