Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.
Nat Struct Mol Biol. 2013 Aug;20(8):965-72. doi: 10.1038/nsmb.2613. Epub 2013 Jul 7.
Tim23, the central subunit of the TIM23 protein-translocation complex, forms a voltage-gated channel in the mitochondrial inner membrane (MIM), an energy-conserving membrane that generates a proton-motive force to drive vital processes. Using high-resolution fluorescence mapping of a channel-facing transmembrane segment (TMS2) of Tim23 from Saccharomyces cerevisiae, we demonstrate that changes in the energized state of the MIM cause marked structural alterations in the channel region. In an energized membrane, TMS2 forms a continuous α-helix that is inaccessible to the aqueous intermembrane space (IMS). Upon depolarization, the helical periodicity of TMS2 is disrupted, and the channel becomes exposed to the IMS. Kinetic measurements confirm that changes in TMS2 conformation coincide with depolarization. These results reveal how the energized state of the membrane drives functionally relevant structural dynamics in membrane proteins coupled to processes such as channel gating.
Tim23 是 TIM23 蛋白转运复合物的中心亚基,它在线粒体内膜(MIM)中形成一个电压门控通道,MIM 是一种能量守恒的膜,能产生质子动力来驱动重要过程。我们利用高分辨率荧光测绘酿酒酵母 Tim23 的面向通道的跨膜片段(TMS2),证明了 MIM 的能量状态变化会导致通道区域发生显著的结构改变。在能量充足的膜中,TMS2 形成一个连续的α-螺旋,无法进入膜间腔(IMS)的水相。去极化时,TMS2 的螺旋周期性被破坏,通道暴露于 IMS。动力学测量证实 TMS2 构象的变化与去极化一致。这些结果揭示了膜的能量状态如何驱动与通道门控等过程相关的膜蛋白的功能相关结构动力学。