Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17697-702. doi: 10.1073/pnas.1306979110. Epub 2013 Jul 8.
Signatures of mass-independent isotope fractionation (MIF) are found in the oxygen ((16)O,(17)O,(18)O) and sulfur ((32)S, (33)S, (34)S, (36)S) isotope systems and serve as important tracers of past and present atmospheric processes. These unique isotope signatures signify the breakdown of the traditional theory of isotope fractionation, but the physical chemistry of these isotope effects remains poorly understood. We report the production of large sulfur isotope MIF, with Δ(33)S up to 78‰ and Δ(36)S up to 110‰, from the broadband excitation of SO2 in the 250-350-nm absorption region. Acetylene is used to selectively trap the triplet-state SO2 ( (3)B1), which results from intersystem crossing from the excited singlet ( (1)A2/ (1)B1) states. The observed MIF signature differs considerably from that predicted by isotopologue-specific absorption cross-sections of SO2 and is insensitive to the wavelength region of excitation (above or below 300 nm), suggesting that the MIF originates not from the initial excitation of SO2 to the singlet states but from an isotope selective spin-orbit interaction between the singlet ( (1)A2/ (1)B1) and triplet ( (3)B1) manifolds. Calculations based on high-level potential energy surfaces of the multiple excited states show a considerable lifetime anomaly for (33)SO2 and (36)SO2 for the low vibrational levels of the (1)A2 state. These results demonstrate that the isotope selectivity of accidental near-resonance interactions between states is of critical importance in understanding the origin of MIF in photochemical systems.
在氧((16)O、(17)O、(18)O)和硫((32)S、(33)S、(34)S、(36)S)同位素体系中发现了质量独立同位素分馏(MIF)的特征,它们是过去和现在大气过程的重要示踪剂。这些独特的同位素特征标志着传统同位素分馏理论的破裂,但这些同位素效应的物理化学性质仍知之甚少。我们报告了在 250-350nm 吸收区域宽带激发 SO2 时产生的大硫同位素 MIF,Δ(33)S 高达 78‰,Δ(36)S 高达 110‰。乙炔用于选择性地捕获三重态 SO2((3)B1),它是由从激发单线态((1)A2/(1)B1)态到系间穿越产生的。观察到的 MIF 特征与 SO2 的同位素特异性吸收截面预测的特征有很大的不同,并且对激发波长区域(高于或低于 300nm)不敏感,这表明 MIF 不是来自 SO2 初始激发到单线态,而是来自单线态((1)A2/(1)B1)和三重态((3)B1)之间的同位素选择性自旋轨道相互作用。基于多重激发态的高精度势能面的计算表明,(1)A2 态的低振动能级对(33)SO2 和(36)SO2 有相当大的寿命异常。这些结果表明,在理解光化学体系中 MIF 的起源时,状态之间偶然近共振相互作用的同位素选择性至关重要。