Pickard Frank C, König Gerhard, Tofoleanu Florentina, Lee Juyong, Simmonett Andrew C, Shao Yihan, Ponder Jay W, Brooks Bernard R
Laboratory of Computational Biology, National Institutes of Health - National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, MD, 20852, USA.
Max Planck Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, NRW, Germany.
J Comput Aided Mol Des. 2016 Nov;30(11):1087-1100. doi: 10.1007/s10822-016-9955-7. Epub 2016 Sep 19.
The computation of distribution coefficients between polar and apolar phases requires both an accurate characterization of transfer free energies between phases and proper accounting of ionization and protomerization. We present a protocol for accurately predicting partition coefficients between two immiscible phases, and then apply it to 53 drug-like molecules in the SAMPL5 blind prediction challenge. Our results combine implicit solvent QM calculations with classical MD simulations using the non-Boltzmann Bennett free energy estimator. The OLYP/DZP/SMD method yields predictions that have a small deviation from experiment (RMSD = 2.3 [Formula: see text] D units), relative to other participants in the challenge. Our free energy corrections based on QM protomer and [Formula: see text] calculations increase the correlation between predicted and experimental distribution coefficients, for all methods used. Unfortunately, these corrections are overly hydrophilic, and fail to account for additional effects such as aggregation, water dragging and the presence of polar impurities in the apolar phase. We show that, although expensive, QM-NBB free energy calculations offer an accurate and robust method that is superior to standard MM and QM techniques alone.
计算极性和非极性相之间的分配系数,既需要准确表征相之间的转移自由能,又需要适当考虑电离和质子化作用。我们提出了一种准确预测两个不混溶相之间分配系数的方法,然后将其应用于SAMPL5盲预测挑战中的53个类药物分子。我们的结果结合了使用非玻尔兹曼贝内特自由能估计器的隐式溶剂量子力学计算和经典分子动力学模拟。相对于挑战中的其他参与者,OLYP/DZP/SMD方法给出的预测结果与实验结果的偏差较小(均方根偏差 = 2.3 [公式:见正文] D单位)。我们基于量子力学质子体和[公式:见正文]计算的自由能校正提高了所有使用方法的预测分配系数与实验分配系数之间的相关性。不幸的是,这些校正过于亲水性,并且未能考虑诸如聚集、水拖曳和非极性相中极性杂质的存在等额外影响。我们表明,尽管成本高昂,但量子力学 - 非玻尔兹曼贝内特自由能计算提供了一种准确且稳健的方法,优于单独的标准分子力学和量子力学技术。