Suppr超能文献

一种利用量子化学和分子动力学模拟重加权来获得精确水合自由能的有效方案。

An efficient protocol for obtaining accurate hydration free energies using quantum chemistry and reweighting from molecular dynamics simulations.

作者信息

Pickard Frank C, König Gerhard, Simmonett Andrew C, Shao Yihan, Brooks Bernard R

机构信息

National Institutes of Health - National Heart, Lung and Blood Institute, Laboratory of Computational Biology, 5635 Fishers Lane, T-900 Suite, Rockville, MD 20852, USA.

National Institutes of Health - National Heart, Lung and Blood Institute, Laboratory of Computational Biology, 5635 Fishers Lane, T-900 Suite, Rockville, MD 20852, USA; Max Planck Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, NRW, Germany.

出版信息

Bioorg Med Chem. 2016 Oct 15;24(20):4988-4997. doi: 10.1016/j.bmc.2016.08.031. Epub 2016 Aug 22.

Abstract

The non-Boltzmann Bennett (NBB) free energy estimator method is applied to 21 molecules from the blind subset of the SAMPL4 challenge. When NBB is applied with the SMD implicit solvent model, and the OLYP/DZP level of quantum chemistry, highly accurate hydration free energy calculations are obtained with respect to experiment (RMSD=0.89kcal·mol). Other quantum chemical methods are also tested, and the effects of solvent model, density functional, basis set are explored in this benchmarking study, providing a framework for improvements in calculating hydration free energies. We provide a practical guide for using the best QM-NBB protocols that are consistently more accurate than either pure QM or pure MM alone. In situations where high accuracy hydration free energy predictions are needed, the QM-NBB method with SMD implicit solvent should be the first choice of quantum chemists.

摘要

非玻尔兹曼贝内特(NBB)自由能估算方法被应用于SAMPL4挑战盲选子集中的21个分子。当NBB与SMD隐式溶剂模型以及OLYP/DZP量子化学水平一起应用时,相对于实验可获得高精度的水合自由能计算结果(均方根偏差=0.89千卡·摩尔)。还测试了其他量子化学方法,并在本基准研究中探索了溶剂模型、密度泛函、基组的影响,为改进水合自由能计算提供了一个框架。我们提供了一份实用指南,介绍使用始终比单独的纯量子力学(QM)或纯分子力学(MM)更准确的最佳QM-NBB协议。在需要高精度水合自由能预测的情况下,采用SMD隐式溶剂的QM-NBB方法应该是量子化学家的首选。

相似文献

1
2
Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
J Comput Aided Mol Des. 2014 Mar;28(3):245-57. doi: 10.1007/s10822-014-9708-4. Epub 2014 Feb 7.
3
Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
J Chem Theory Comput. 2016 Jan 12;12(1):332-44. doi: 10.1021/acs.jctc.5b00874. Epub 2015 Dec 11.
4
Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK corrections.
J Comput Aided Mol Des. 2016 Nov;30(11):1087-1100. doi: 10.1007/s10822-016-9955-7. Epub 2016 Sep 19.
5
Comparison of Methods To Reweight from Classical Molecular Simulations to QM/MM Potentials.
J Chem Theory Comput. 2016 Apr 12;12(4):1466-80. doi: 10.1021/acs.jctc.5b01188. Epub 2016 Mar 23.
7
Efficiently computing pathway free energies: New approaches based on chain-of-replica and Non-Boltzmann Bennett reweighting schemes.
Biochim Biophys Acta. 2015 May;1850(5):944-953. doi: 10.1016/j.bbagen.2014.09.016. Epub 2014 Sep 17.
8
Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.
J Chem Theory Comput. 2016 Feb 9;12(2):499-511. doi: 10.1021/acs.jctc.5b00920. Epub 2016 Jan 12.
9
Binding affinities by alchemical perturbation using QM/MM with a large QM system and polarizable MM model.
J Comput Chem. 2015 Oct 30;36(28):2114-24. doi: 10.1002/jcc.24048. Epub 2015 Aug 17.
10
Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.
J Comput Chem. 2016 Jun 30;37(17):1589-600. doi: 10.1002/jcc.24375. Epub 2016 Apr 27.

引用本文的文献

1
Physics-Based Solubility Prediction for Organic Molecules.
Chem Rev. 2025 Aug 13;125(15):7057-7098. doi: 10.1021/acs.chemrev.4c00855. Epub 2025 Jul 29.
2
Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints.
J Chem Theory Comput. 2021 Mar 9;17(3):1326-1336. doi: 10.1021/acs.jctc.0c01219. Epub 2021 Feb 2.
3
On the faithfulness of molecular mechanics representations of proteins towards quantum-mechanical energy surfaces.
Interface Focus. 2020 Dec 6;10(6):20190121. doi: 10.1098/rsfs.2019.0121. Epub 2020 Oct 16.
4
Use of Interaction Energies in QM/MM Free Energy Simulations.
J Chem Theory Comput. 2019 Aug 13;15(8):4632-4645. doi: 10.1021/acs.jctc.9b00084. Epub 2019 Jul 2.
6
Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK corrections.
J Comput Aided Mol Des. 2016 Nov;30(11):1087-1100. doi: 10.1007/s10822-016-9955-7. Epub 2016 Sep 19.

本文引用的文献

1
Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge.
J Comput Aided Mol Des. 2016 Nov;30(11):945-958. doi: 10.1007/s10822-016-9971-7. Epub 2016 Oct 7.
2
Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.
J Comput Chem. 2016 Jun 30;37(17):1589-600. doi: 10.1002/jcc.24375. Epub 2016 Apr 27.
3
Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods.
Chem Rev. 2016 May 11;116(9):5520-66. doi: 10.1021/acs.chemrev.5b00630. Epub 2016 Apr 14.
4
Comparison of Methods To Reweight from Classical Molecular Simulations to QM/MM Potentials.
J Chem Theory Comput. 2016 Apr 12;12(4):1466-80. doi: 10.1021/acs.jctc.5b01188. Epub 2016 Mar 23.
5
Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.
J Chem Theory Comput. 2016 Feb 9;12(2):499-511. doi: 10.1021/acs.jctc.5b00920. Epub 2016 Jan 12.
7
Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
J Chem Theory Comput. 2016 Jan 12;12(1):332-44. doi: 10.1021/acs.jctc.5b00874. Epub 2015 Dec 11.
9
Binding affinities by alchemical perturbation using QM/MM with a large QM system and polarizable MM model.
J Comput Chem. 2015 Oct 30;36(28):2114-24. doi: 10.1002/jcc.24048. Epub 2015 Aug 17.
10
A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration.
J Phys Chem B. 2015 Jun 11;119(23):7030-40. doi: 10.1021/acs.jpcb.5b01625. Epub 2015 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验