Suppr超能文献

结核分枝杆菌细胞包膜生物发生靶向治疗的研究进展。

Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis.

机构信息

Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.

出版信息

Future Microbiol. 2013 Jul;8(7):855-75. doi: 10.2217/fmb.13.52.

Abstract

Most of the newly discovered compounds showing promise for the treatment of TB, notably multidrug-resistant TB, inhibit aspects of Mycobacterium tuberculosis cell envelope metabolism. This review reflects on the evolution of the knowledge that many of the front-line and emerging products inhibit aspects of cell envelope metabolism and in the process are bactericidal not only against actively replicating M. tuberculosis, but contrary to earlier impressions, are effective against latent forms of the disease. While mycolic acid and arabinogalactan synthesis are still primary targets of existing and new drugs, peptidoglycan synthesis, transport mechanisms and the synthesis of the decaprenyl-phosphate carrier lipid all show considerable promise as targets for new products, older drugs and new combinations. The advantages of whole cell- versus target-based screening in the perpetual search for new targets and products to counter multidrug-resistant TB are discussed.

摘要

大多数新发现的具有治疗结核病(尤其是耐多药结核病)潜力的化合物都能抑制分枝杆菌细胞包膜代谢的某些方面。这篇综述反映了一个认识的发展过程,即许多一线和新兴产品都能抑制细胞包膜代谢的某些方面,而且这些产品不仅具有杀菌作用,不仅针对活跃复制的结核分枝杆菌,而且与早期的印象相反,对疾病的潜伏形式也有效。虽然分枝菌酸和阿拉伯半乳聚糖的合成仍然是现有和新药物的主要靶点,但肽聚糖合成、运输机制和脱乙酰壳多糖磷酸载体脂质的合成都显示出作为新产品、旧药物和新组合的靶点的巨大潜力。本文讨论了在不断寻找新的针对耐多药结核病的靶点和药物的过程中,基于全细胞筛选与基于靶标筛选的优缺点。

相似文献

1
Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis.
Future Microbiol. 2013 Jul;8(7):855-75. doi: 10.2217/fmb.13.52.
3
Targeting the formation of the cell wall core of M. tuberculosis.
Infect Disord Drug Targets. 2007 Jun;7(2):182-202. doi: 10.2174/187152607781001808.
4
Emerging therapeutic targets in tuberculosis: post-genomic era.
Expert Opin Ther Targets. 2002 Feb;6(1):21-40. doi: 10.1517/14728222.6.1.21.
5
Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis.
Adv Appl Microbiol. 2009;69:23-78. doi: 10.1016/S0065-2164(09)69002-X.
6
The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis.
Appl Microbiol Biotechnol. 2013 Oct;97(20):8841-8. doi: 10.1007/s00253-013-5218-x. Epub 2013 Sep 14.
7
Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01334-17. Print 2017 Dec.
8
Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant .
ACS Infect Dis. 2023 Dec 8;9(12):2369-2385. doi: 10.1021/acsinfecdis.3c00436. Epub 2023 Nov 9.
9
Potential Drug Targets in Mycobacterial Cell Wall: Non-Lipid Perspective.
Curr Drug Discov Technol. 2020;17(2):147-153. doi: 10.2174/1570163815666180605113609.
10
Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target.
Parasitology. 2018 Feb;145(2):116-133. doi: 10.1017/S0031182016002377. Epub 2016 Dec 15.

引用本文的文献

1
B Cell and Antibody Responses in Bovine Tuberculosis.
Antibodies (Basel). 2024 Oct 9;13(4):84. doi: 10.3390/antib13040084.
3
Conjugation of Vancomycin with a Single Arginine Improves Efficacy against Mycobacteria by More Effective Peptidoglycan Targeting.
J Med Chem. 2023 Aug 10;66(15):10226-10237. doi: 10.1021/acs.jmedchem.3c00565. Epub 2023 Jul 21.
4
A pro-oxidant property of vitamin C to overcome the burden of latent infection: A cross-talk review with Fenton reaction.
Front Cell Infect Microbiol. 2023 Apr 19;13:1152269. doi: 10.3389/fcimb.2023.1152269. eCollection 2023.
5
Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria.
ACS Chem Biol. 2023 Mar 17;18(3):595-604. doi: 10.1021/acschembio.2c00912. Epub 2023 Mar 1.
6
The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development.
Mol Biomed. 2022 Dec 22;3(1):48. doi: 10.1186/s43556-022-00106-y.
7
Extracellular Vesicles in Mycobacteria and Tuberculosis.
Front Cell Infect Microbiol. 2022 May 27;12:912831. doi: 10.3389/fcimb.2022.912831. eCollection 2022.
8
Recent Progress in the Development of Novel Mycobacterium Cell Wall Inhibitor to Combat Drug-Resistant Tuberculosis.
Microbiol Insights. 2022 May 23;15:11786361221099878. doi: 10.1177/11786361221099878. eCollection 2022.
10
Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities.
Med Res Rev. 2021 Jul;41(4):2350-2387. doi: 10.1002/med.21798. Epub 2021 Mar 1.

本文引用的文献

1
Assay development for identifying inhibitors of the mycobacterial FadD32 activity.
J Biomol Screen. 2013 Jun;18(5):576-87. doi: 10.1177/1087057112474691. Epub 2013 Jan 30.
3
Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues.
PLoS One. 2013;8(1):e53162. doi: 10.1371/journal.pone.0053162. Epub 2013 Jan 3.
4
Targeting the mycobacterial envelope for tuberculosis drug development.
Expert Rev Anti Infect Ther. 2012 Sep;10(9):1023-36. doi: 10.1586/eri.12.91.
5
Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of L,D-transpeptidase 2.
Structure. 2012 Dec 5;20(12):2103-15. doi: 10.1016/j.str.2012.09.016. Epub 2012 Oct 25.
6
A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone.
J Biol Chem. 2012 Nov 9;287(46):38434-41. doi: 10.1074/jbc.M112.400994. Epub 2012 Sep 21.
7
Antitubercular nitrofuran isoxazolines with improved pharmacokinetic properties.
Bioorg Med Chem. 2012 Oct 15;20(20):6063-72. doi: 10.1016/j.bmc.2012.08.023. Epub 2012 Aug 28.
8
Towards a new tuberculosis drug: pyridomycin - nature's isoniazid.
EMBO Mol Med. 2012 Oct;4(10):1032-42. doi: 10.1002/emmm.201201689. Epub 2012 Sep 17.
9
Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis.
Sci Transl Med. 2012 Sep 5;4(150):150ra121. doi: 10.1126/scitranslmed.3004395.
10
In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2012 Nov;56(11):5790-3. doi: 10.1128/AAC.01476-12. Epub 2012 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验