Laboratório de Química Biológica and †Laboratório de Química do Estado Sólido, Instituto de Química, Universidade Estadual de Campinas , 13083-970, Campinas-SP, Brazil.
ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8387-93. doi: 10.1021/am4014693. Epub 2013 Jul 25.
Although there are several studies reporting the promising biological efficiency of mesoporous silica nanoparticles (loaded with antitumoral drugs) against cancer cells and tumors, there are no reports on the influence of the bio-nano interface interactions on the molecular diffusion process occurring along their pores. In this context, we show here that the protein coating formed on multifunctionalized colloidal mesoporous silica nanoparticles (MSNs) dispersed in a cell culture medium decreases the release of camptothecin (CPT, a hydrophobic antitumoral drug) from the pores of MSNs. This effect is related to the adsorption of biomolecules on the nanoparticle surface, which partially blocks the pores. Parallely, the hydrophobic functionalization inside the pores can offer suitable sites for the adsorption of other molecules present in the cell culture medium depending on the hydrophobicity, size, and conformation aspects of these molecules and adsorption sites of MSNs. Thus, the molecular cargo loaded in the pores (i.e. CPT) can be replaced by specific molecules present in the dispersion medium. As a consequence, we show that a non-permeable cellular staining molecule such as SYTOX green can be incorporated in MSNs through this mechanism and internalized by cells in an artificial fashion. By extrapolating this phenomenon for applications in vivo, one has to consider now the possible manifestation of unpredicted biological effects from the use of porous silica nanoparticles and others with similar structure due to these internalization aspects.
尽管有几项研究报道了介孔硅纳米粒子(负载抗肿瘤药物)对癌细胞和肿瘤具有有前途的生物效率,但关于生物-纳米界面相互作用对沿其孔发生的分子扩散过程的影响,尚无报道。在这种情况下,我们在这里表明,在细胞培养基中分散的多功能化胶体介孔硅纳米粒子(MSNs)上形成的蛋白质涂层会降低 MSNs 孔中喜树碱(CPT,一种疏水抗肿瘤药物)的释放。这种效应与生物分子在纳米粒子表面的吸附有关,它部分阻塞了孔。同时,内部的疏水性功能化可以根据这些分子的疏水性、大小和构象方面以及 MSNs 的吸附位点,为细胞培养基中存在的其他分子提供合适的吸附位点。因此,加载到孔中的分子货物(即 CPT)可以被分散介质中存在的特定分子所取代。因此,我们表明,通过这种机制可以将非渗透细胞染色分子(如 SYTOX 绿)掺入 MSNs 中,并以人工方式被细胞内化。通过将这种现象推断应用于体内,现在必须考虑由于这些内化方面,使用多孔硅纳米粒子和其他具有类似结构的纳米粒子可能表现出不可预测的生物学效应。