Suppr超能文献

基于形貌的胶体二氧化硅纳米粒子的生物纳米相互作用。

Topography-driven bionano-interactions on colloidal silica nanoparticles.

机构信息

Department of Physics, Universidade Federal do Ceará , P.O. Box 6030, 60455-900, Fortaleza, Ceará, Brazil.

出版信息

ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3437-47. doi: 10.1021/am405594q. Epub 2014 Feb 26.

Abstract

We report here that the surface topography of colloidal mesoporous silica nanoparticles (MSNs) plays a key role on their bionano-interactions by driving the adsorption of biomolecules on the nanoparticle through a matching mechanism between the surface cavities characteristics and the biomolecules stereochemistry. This conclusion was drawn by analyzing the biophysicochemical properties of colloidal MSNs in the presence of single biomolecules, such as alginate or bovine serum albumin (BSA), as well as dispersed in a complex biofluid, such as human blood plasma. When dispersed in phosphate buffered saline media containing alginate or BSA, monodisperse spherical MSNs interact with linear biopolymers such as alginate and with a globular protein such as bovine serum albumin (BSA) independently of the surface charge sign (i.e. positive or negative), thus leading to a decrease in the surface energy and to the colloidal stabilization of these nanoparticles. In contrast, silica nanoparticles with irregular surface topographies are not colloidally stabilized in the presence of alginate but they are electrosterically stabilized by BSA through a sorption mechanism that implies reversible conformation changes of the protein, as evidenced by circular dichroism (CD). The match between the biomolecule size and stereochemistry with the nanoparticle surface cavities characteristics reflects on the nanoparticle surface area that is accessible for each biomolecule to interact and stabilize any non-rigid nanoparticles. On the other hand, in contact with variety of biomolecules such as those present in blood plasma (55%), MSNs are colloidally stabilized regardless of the topography and surface charge, although the identity of the protein corona responsible for this stabilization is influenced by the surface topography and surface charge. Therefore, the biofluid in which nanoparticles are introduced plays an important role on their physicochemical behavior synergistically with their inherent characteristics (e.g., surface topography).

摘要

我们在此报告,胶体介孔硅纳米粒子(MSNs)的表面形貌通过在纳米粒子表面上通过表面腔特征与生物分子立体化学之间的匹配机制来驱动生物分子的吸附,从而在其生物纳米相互作用中起着关键作用。这一结论是通过分析胶体 MSNs 在存在单一生物分子(如藻酸盐或牛血清白蛋白(BSA))时以及在复杂生物流体(如人血浆)中分散时的生物物理化学性质得出的。当分散在含有藻酸盐或 BSA 的磷酸盐缓冲盐介质中时,单分散球形 MSNs 与线性生物聚合物(如藻酸盐)以及与球状蛋白质(如牛血清白蛋白(BSA))相互作用,而与表面电荷符号(即正或负)无关,从而导致表面能降低和这些纳米粒子的胶体稳定性。相比之下,具有不规则表面形貌的硅纳米粒子在存在藻酸盐时不会胶体稳定,但它们通过吸附机制被 BSA 静电稳定,该吸附机制涉及蛋白质的可逆构象变化,如圆二色性(CD)所证明的。生物分子大小和立体化学与纳米粒子表面腔特征之间的匹配反映了纳米粒子表面可用于每个生物分子相互作用和稳定任何非刚性纳米粒子的表面积。另一方面,与存在于血浆中的各种生物分子(55%)接触时,MSNs 无论形貌和表面电荷如何都保持胶体稳定,尽管负责这种稳定的蛋白质冠的身份受到形貌和表面电荷的影响。因此,纳米粒子所处的生物流体与其固有特性(例如表面形貌)协同地对其物理化学行为起着重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验