Suppr超能文献

调整静脉止血纳米颗粒上的配体密度可显著提高钝器创伤后的存活率。

Tuning ligand density on intravenous hemostatic nanoparticles dramatically increases survival following blunt trauma.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

Biomacromolecules. 2013 Aug 12;14(8):2790-7. doi: 10.1021/bm400619v. Epub 2013 Jul 24.

Abstract

Targeted nanoparticles are being pursued for a range of medical applications. Here we utilized targeted nanoparticles (synthetic platelets) to halt bleeding in acute trauma. One of the major questions that arises in the field is the role of surface ligand density in targeted nanoparticles' performance. We developed intravenous hemostatic nanoparticles (GRGDS-NP1) and previously demonstrated their ability to reduce bleeding following femoral artery injury and increase survival after lethal liver trauma in the rat. These nanoparticles are made from block copolymers, poly(lactic-co-glycolic acid)-b-poly L-lysine-b-poly(ethylene glycol). Surface-conjugated targeting ligand density can be tightly controlled with this system, and here we investigated the effect of varying density on hemostasis and biodistribution. We increased the targeting peptide (GRGDS) concentration 100-fold (GRGDS-NP100) and undertook an in vitro dose-response study using rotational thromboelastometry, finding that GRGDS-NP100 hemostatic nanoparticles were efficacious at doses at least 10 times lower than the GRGDS-NP1. These results were recapitulated in vivo, demonstrating efficacy at eight-fold lower concentration after lethal liver trauma. 1 h survival increased to 92% compared with a scrambled peptide control, 45% (OR = 14.4, 95% CI = [1.36, 143]), a saline control, 47% (OR = 13.5, 95% CI = [1.42, 125]), and GRGDS-NP1, 80% (OR = 1.30, n.s.). This work demonstrates the impact of changing synthetic platelet ligand density on hemostasis and lays the foundation for methods to determine optimal ligand concentration parameters.

摘要

靶向纳米颗粒正被广泛应用于各种医学领域。在这里,我们利用靶向纳米颗粒(合成血小板)来控制急性创伤中的出血。在这个领域中,出现的一个主要问题是表面配体密度对靶向纳米颗粒性能的影响。我们开发了静脉内止血纳米颗粒(GRGDS-NP1),并已证明其在股动脉损伤后减少出血和提高致命性肝损伤大鼠存活率方面的能力。这些纳米颗粒由嵌段共聚物聚(乳酸-共-乙醇酸)-b-聚 L-赖氨酸-b-聚乙二醇制成。通过该系统可以严格控制表面结合的靶向配体密度,在此我们研究了配体密度变化对止血和生物分布的影响。我们将靶向肽(GRGDS)浓度提高了 100 倍(GRGDS-NP100),并使用旋转血栓弹性测定法进行了体外剂量反应研究,发现 GRGDS-NP100 止血纳米颗粒在至少低 10 倍的剂量下就具有疗效。这些结果在体内得到了重现,在致命性肝损伤后,其浓度低 8 倍即可达到疗效。1 h 存活率提高到 92%,与乱序肽对照相比提高了 45%(OR = 14.4,95%CI = [1.36,143]),与盐水对照相比提高了 47%(OR = 13.5,95%CI = [1.42,125]),与 GRGDS-NP1 相比提高了 80%(OR = 1.30,无统计学意义)。这项工作证明了改变合成血小板配体密度对止血的影响,并为确定最佳配体浓度参数的方法奠定了基础。

相似文献

6
Intravenous hemostat: nanotechnology to halt bleeding.静脉止血剂:纳米技术止血。
Sci Transl Med. 2009 Dec 16;1(11):11ra22. doi: 10.1126/scitranslmed.3000397.

引用本文的文献

6
Biomimetic Strategies To Treat Traumatic Brain Injury by Leveraging Fibrinogen.仿生策略利用纤维蛋白原治疗创伤性脑损伤。
Bioconjug Chem. 2019 Jul 17;30(7):1951-1956. doi: 10.1021/acs.bioconjchem.9b00360. Epub 2019 Jul 5.

本文引用的文献

9
PLGA-based nanoparticles: an overview of biomedical applications.PLGA 基纳米粒子:生物医学应用概述。
J Control Release. 2012 Jul 20;161(2):505-22. doi: 10.1016/j.jconrel.2012.01.043. Epub 2012 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验