Poignard Camille
Mathematics Laboratory J.A Dieudonné, University of Nice Sophia Antipolis, UMR CNRS 7351, 06108 , Nice Cedex 02, France,
J Math Biol. 2014 Aug;69(2):335-68. doi: 10.1007/s00285-013-0703-5. Epub 2013 Jul 10.
In this paper, we investigate the chaotic behavior of a gene regulatory network modeled by four differential equations and seventeen parameters. This network, called [Formula: see text]-system, has been designed to couple in a simple way an oscillating system with one having a bistable switch. After having studied it analytically, we exhibit (by a constructive proof) the mechanism responsible of chaos for a general differential system presenting such a coupling. Namely, given a generic one-parameter family of smooth vector fields on [Formula: see text] presenting a Hopf bifurcation, we prove that under an assumption on the Jacobian at the bifurcation point, we can create such a chaotic system by perturbing the parameter thanks to a hysteresis-type dynamics. Finally, we numerically show that the mechanism highlighted previously takes place in the [Formula: see text]-system, for a particular set of values of its parameters.
在本文中,我们研究了一个由四个微分方程和十七个参数建模的基因调控网络的混沌行为。这个网络,称为[公式:见正文]-系统,旨在以一种简单的方式将一个振荡系统与一个具有双稳开关的系统耦合起来。在对其进行解析研究之后,我们(通过构造性证明)展示了对于呈现这种耦合的一般微分系统而言,导致混沌的机制。具体而言,给定在[公式:见正文]上呈现霍普夫分岔的一族一般的单参数光滑向量场,我们证明在关于分岔点处雅可比矩阵的一个假设下,借助滞后型动力学通过扰动参数我们可以创建这样一个混沌系统。最后,我们通过数值方法表明,对于[公式:见正文]-系统参数的一组特定值,先前突出显示的机制确实会发生。