Suppr超能文献

基于简单图的脑机接口的多分辨率分析。

Multiresolution analysis over simple graphs for brain computer interfaces.

机构信息

University of Essex,Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.

出版信息

J Neural Eng. 2013 Aug;10(4):046014. doi: 10.1088/1741-2560/10/4/046014. Epub 2013 Jul 11.

Abstract

OBJECTIVE

Multiresolution analysis (MRA) offers a useful framework for signal analysis in the temporal and spectral domains, although commonly employed MRA methods may not be the best approach for brain computer interface (BCI) applications. This study aims to develop a new MRA system for extracting tempo-spatial-spectral features for BCI applications based on wavelet lifting over graphs.

APPROACH

This paper proposes a new graph-based transform for wavelet lifting and a tailored simple graph representation for electroencephalography (EEG) data, which results in an MRA system where temporal, spectral and spatial characteristics are used to extract motor imagery features from EEG data. The transformed data is processed within a simple experimental framework to test the classification performance of the new method.

MAIN RESULTS

The proposed method can significantly improve the classification results obtained by various wavelet families using the same methodology. Preliminary results using common spatial patterns as feature extraction method show that we can achieve comparable classification accuracy to more sophisticated methodologies. From the analysis of the results we can obtain insights into the pattern development in the EEG data, which provide useful information for feature basis selection and thus for improving classification performance.

SIGNIFICANCE

Applying wavelet lifting over graphs is a new approach for handling BCI data. The inherent flexibility of the lifting scheme could lead to new approaches based on the hereby proposed method for further classification performance improvement.

摘要

目的

多分辨率分析(MRA)为时间和频谱域中的信号分析提供了有用的框架,尽管常用的 MRA 方法可能不是脑机接口(BCI)应用的最佳方法。本研究旨在开发一种新的 MRA 系统,用于基于图上的小波提升提取 BCI 应用的时-空-谱特征。

方法

本文提出了一种新的基于图的小波提升变换和针对脑电图(EEG)数据的专用简单图表示,从而得到一个 MRA 系统,其中使用时间、频谱和空间特征从 EEG 数据中提取运动想象特征。变换后的数据在一个简单的实验框架内进行处理,以测试新方法的分类性能。

主要结果

与使用相同方法的各种小波族相比,所提出的方法可以显著提高分类结果。使用常见空间模式作为特征提取方法的初步结果表明,我们可以达到与更复杂方法相当的分类精度。从结果分析中,我们可以深入了解 EEG 数据中的模式发展,这为特征基选择提供了有用的信息,从而提高了分类性能。

意义

在图上应用小波提升是处理 BCI 数据的一种新方法。提升方案的固有灵活性可以为进一步提高分类性能提供基于本文提出的方法的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验