Suppr超能文献

功能连接和特征融合提高多类运动想象脑-机接口性能。

Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain-Computer Interface Performance.

机构信息

Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.

Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.

出版信息

Sensors (Basel). 2023 Aug 30;23(17):7520. doi: 10.3390/s23177520.

Abstract

(1) Background: in the field of motor-imagery brain-computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which leads to limited results. To address this limitation, there has been growing interest in leveraging functional brain connectivity (FC) as a feature in MI-BCIs. However, the high inter- and intra-subject variability has so far limited its effectiveness in this domain. (2) Methods: we propose a novel signal processing framework that addresses this challenge. We extracted translation-invariant features (TIFs) obtained from a scattering convolution network (SCN) and brain connectivity features (BCFs). Through a feature fusion approach, we combined features extracted from selected channels and functional connectivity features, capitalizing on the strength of each component. Moreover, we employed a multiclass support vector machine (SVM) model to classify the extracted features. (3) Results: using a public dataset (IIa of the BCI Competition IV), we demonstrated that the feature fusion approach outperformed existing state-of-the-art methods. Notably, we found that the best results were achieved by merging TIFs with BCFs, rather than considering TIFs alone. (4) Conclusions: our proposed framework could be the key for improving the performance of a multiclass MI-BCI system.

摘要

(1)背景:在运动想象脑-机接口(MI-BCI)领域中,从多个 MI 任务中获取判别特征是一项重大挑战。通常,特征是从单个脑电图(EEG)通道中提取的,忽略了它们的相互连接,这导致了结果的局限性。为了解决这个局限性,人们越来越关注利用功能脑连接(FC)作为 MI-BCI 中的一个特征。然而,高的个体内和个体间的可变性迄今为止限制了其在该领域的有效性。(2)方法:我们提出了一个新的信号处理框架来解决这个挑战。我们从散射卷积网络(SCN)中提取了平移不变特征(TIFs)和脑连接特征(BCFs)。通过特征融合方法,我们结合了从选定通道和功能连接特征中提取的特征,利用每个组件的优势。此外,我们还采用了多类支持向量机(SVM)模型对提取的特征进行分类。(3)结果:使用一个公共数据集(BCI 竞赛四的 IIa 部分),我们证明了特征融合方法优于现有的最先进方法。值得注意的是,我们发现将 TIFs 与 BCFs 融合的效果最佳,而不是仅考虑 TIFs。(4)结论:我们提出的框架可能是提高多类 MI-BCI 系统性能的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ce/10490741/77c526cba317/sensors-23-07520-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验