Suppr超能文献

应用于数据可视化的双向判别

Bidirectional discrimination with application to data visualization.

作者信息

Huang Hanwen, Liu Yufeng, Marron J S

机构信息

Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, U.S.A. ,

出版信息

Biometrika. 2012 Dec;99(4):851-864. doi: 10.1093/biomet/ass029. Epub 2012 Jul 24.

Abstract

Linear classifiers are very popular, but can have limitations when classes have distinct subpopulations. General nonlinear kernel classifiers are very flexible, but do not give clear interpretations and may not be efficient in high dimensions. We propose the bidirectional discrimination classification method, which generalizes linear classifiers to two or more hyperplanes. This new family of classification methods gives much of the flexibility of a general nonlinear classifier while maintaining the interpretability, and much of the parsimony, of linear classifiers. They provide a new visualization tool for high-dimensional, low-sample-size data. Although the idea is generally applicable, we focus on the generalization of the support vector machine and distance-weighted discrimination methods. The performance and usefulness of the proposed method are assessed using asymptotics and demonstrated through analysis of simulated and real data. Our method leads to better classification performance in high-dimensional situations where subclusters are present in the data.

摘要

线性分类器非常流行,但当类别具有不同的子群体时可能存在局限性。一般的非线性核分类器非常灵活,但无法给出清晰的解释,并且在高维情况下可能效率不高。我们提出了双向判别分类方法,该方法将线性分类器推广到两个或更多超平面。这个新的分类方法家族在保持线性分类器的可解释性和简约性的同时,具有一般非线性分类器的大部分灵活性。它们为高维、低样本量数据提供了一种新的可视化工具。尽管该思想普遍适用,但我们专注于支持向量机和距离加权判别方法的推广。使用渐近分析评估了所提出方法的性能和实用性,并通过对模拟数据和真实数据的分析进行了演示。我们的方法在数据中存在子簇的高维情况下能带来更好的分类性能。

相似文献

1
Bidirectional discrimination with application to data visualization.
Biometrika. 2012 Dec;99(4):851-864. doi: 10.1093/biomet/ass029. Epub 2012 Jul 24.
2
Convex Bidirectional Large Margin Classifiers.
Technometrics. 2019;61(2):176-186. doi: 10.1080/00401706.2018.1497544. Epub 2018 Sep 12.
3
New support vector-based design method for binary hierarchical classifiers for multi-class classification problems.
Neural Netw. 2008 Mar-Apr;21(2-3):502-10. doi: 10.1016/j.neunet.2007.12.005. Epub 2007 Dec 8.
4
Composite large margin classifiers with latent subclasses for heterogeneous biomedical data.
Stat Anal Data Min. 2016 Apr;9(2):75-88. doi: 10.1002/sam.11300. Epub 2016 Jan 8.
5
Maximum Decentral Projection Margin Classifier for High Dimension and Low Sample Size problems.
Neural Netw. 2023 Jan;157:147-159. doi: 10.1016/j.neunet.2022.10.017. Epub 2022 Oct 22.
6
Structural regularized support vector machine: a framework for structural large margin classifier.
IEEE Trans Neural Netw. 2011 Apr;22(4):573-87. doi: 10.1109/TNN.2011.2108315. Epub 2011 Mar 7.
7
Comparison of multivariate classifiers and response normalizations for pattern-information fMRI.
Neuroimage. 2010 Oct 15;53(1):103-18. doi: 10.1016/j.neuroimage.2010.05.051. Epub 2010 May 23.
8
LESS: a model-based classifier for sparse subspaces.
IEEE Trans Pattern Anal Mach Intell. 2005 Sep;27(9):1496-500. doi: 10.1109/TPAMI.2005.182.
9
Best Fitting Hyperplanes for Classification.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1076-1088. doi: 10.1109/TPAMI.2016.2587647. Epub 2016 Jul 7.
10
White box radial basis function classifiers with component selection for clinical prediction models.
Artif Intell Med. 2014 Jan;60(1):53-64. doi: 10.1016/j.artmed.2013.10.001. Epub 2013 Oct 18.

引用本文的文献

1
Convex Bidirectional Large Margin Classifiers.
Technometrics. 2019;61(2):176-186. doi: 10.1080/00401706.2018.1497544. Epub 2018 Sep 12.
2
A survey of high dimension low sample size asymptotics.
Aust N Z J Stat. 2018 Mar;60(1):4-19. doi: 10.1111/anzs.12212. Epub 2018 Mar 14.
3
Composite large margin classifiers with latent subclasses for heterogeneous biomedical data.
Stat Anal Data Min. 2016 Apr;9(2):75-88. doi: 10.1002/sam.11300. Epub 2016 Jan 8.

本文引用的文献

1
Weighted Distance Weighted Discrimination and Its Asymptotic Properties.
J Am Stat Assoc. 2010 Mar 1;105(489):401-414. doi: 10.1198/jasa.2010.tm08487.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验