Suppr超能文献

基于约束皮质厚度变化的脑 MRI 图像的 4D 分割。

4D segmentation of brain MR images with constrained cortical thickness variation.

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

PLoS One. 2013 Jul 2;8(7):e64207. doi: 10.1371/journal.pone.0064207. Print 2013.

Abstract

Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.

摘要

脑磁共振图像分割在研究大脑皮质的发育、老化和疾病进展变化的纵向研究中起着重要作用。然而,大多数现有的脑分割方法都是分别考虑多个时间点的图像,因此无法实现纵向一致性。例如,从分割图像中测量的皮质厚度将包含不必要的时间变化,这将影响与时间相关的变化模式,并最终降低分析的统计效力。在本文中,我们提出了一种具有皮质厚度变化约束的成人脑磁共振图像的 4D 分割框架。具体来说,我们利用局部强度信息来解决强度不均匀性问题,利用空间皮质厚度约束来保持皮质厚度在合理范围内,利用相邻时间点的皮质厚度变化约束来抑制人为变化。所提出的方法已经在 BLSA 数据集和 ADNI 数据集上进行了测试,取得了有希望的结果。定性和定量实验结果均表明,与其他最先进的 4D 分割方法相比,该方法具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c334/3699620/8c97415ed5d1/pone.0064207.g001.jpg

相似文献

1
4D segmentation of brain MR images with constrained cortical thickness variation.
PLoS One. 2013 Jul 2;8(7):e64207. doi: 10.1371/journal.pone.0064207. Print 2013.
2
Automatic segmentation of neonatal images using convex optimization and coupled level sets.
Neuroimage. 2011 Oct 1;58(3):805-17. doi: 10.1016/j.neuroimage.2011.06.064. Epub 2011 Jul 5.
3
A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.
Med Image Anal. 2015 May;22(1):1-20. doi: 10.1016/j.media.2015.01.005. Epub 2015 Feb 3.
4
Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation.
Neuroimage Clin. 2016 Feb 16;11:264-275. doi: 10.1016/j.nicl.2016.02.005. eCollection 2016.
5
Consistent 4D cortical thickness measurement for longitudinal neuroimaging study.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):133-42. doi: 10.1007/978-3-642-15745-5_17.
6
Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features.
Neurobiol Aging. 2012 Feb;33(2):427.e15-30. doi: 10.1016/j.neurobiolaging.2010.11.008. Epub 2011 Jan 26.
8
Robust generative asymmetric GMM for brain MR image segmentation.
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.
9
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.
10
Segmentation of neonatal brain MR images using patch-driven level sets.
Neuroimage. 2014 Jan 1;84:141-58. doi: 10.1016/j.neuroimage.2013.08.008. Epub 2013 Aug 19.

引用本文的文献

4
Scalable Joint Segmentation and Registration Framework for Infant Brain Images.
Neurocomputing (Amst). 2017 Mar 15;229:54-62. doi: 10.1016/j.neucom.2016.05.107. Epub 2016 Nov 16.
5
Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method.
Front Comput Neurosci. 2017 May 22;11:37. doi: 10.3389/fncom.2017.00037. eCollection 2017.
6
Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases.
Neuroimage. 2016 Nov 1;141:542-555. doi: 10.1016/j.neuroimage.2016.07.020. Epub 2016 Jul 15.
9
Compounding local invariant features and global deformable geometry for medical image registration.
PLoS One. 2014 Aug 28;9(8):e105815. doi: 10.1371/journal.pone.0105815. eCollection 2014.

本文引用的文献

1
Longitudinally guided level sets for consistent tissue segmentation of neonates.
Hum Brain Mapp. 2013 Apr;34(4):956-72. doi: 10.1002/hbm.21486. Epub 2011 Dec 3.
2
Consistent reconstruction of cortical surfaces from longitudinal brain MR images.
Neuroimage. 2012 Feb 15;59(4):3805-20. doi: 10.1016/j.neuroimage.2011.11.012. Epub 2011 Nov 15.
3
Learning-based meta-algorithm for MRI brain extraction.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):313-21. doi: 10.1007/978-3-642-23626-6_39.
4
Longitudinal cortical thickness estimation using Khalimsky's cubic complex.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):467-75. doi: 10.1007/978-3-642-23629-7_57.
5
Automatic segmentation of neonatal images using convex optimization and coupled level sets.
Neuroimage. 2011 Oct 1;58(3):805-17. doi: 10.1016/j.neuroimage.2011.06.064. Epub 2011 Jul 5.
6
Avoiding asymmetry-induced bias in longitudinal image processing.
Neuroimage. 2011 Jul 1;57(1):19-21. doi: 10.1016/j.neuroimage.2011.02.076. Epub 2011 Mar 3.
7
Registration of longitudinal image sequences with implicit template and spatial-temporal heuristics.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):618-25. doi: 10.1007/978-3-642-15745-5_76.
8
Consistent 4D cortical thickness measurement for longitudinal neuroimaging study.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):133-42. doi: 10.1007/978-3-642-15745-5_17.
9
Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI.
Neuroimage. 2010 Aug 1;52(1):109-18. doi: 10.1016/j.neuroimage.2010.04.006. Epub 2010 Apr 9.
10
Subregional neuroanatomical change as a biomarker for Alzheimer's disease.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20954-9. doi: 10.1073/pnas.0906053106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验