Suppr超能文献

使用隐式模板和时空启发式方法对纵向图像序列进行配准。

Registration of longitudinal image sequences with implicit template and spatial-temporal heuristics.

作者信息

Wu Guorong, Wang Qian, Jia Hongjun, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):618-25. doi: 10.1007/978-3-642-15745-5_76.

Abstract

Accurate measurement of longitudinal changes of anatomical structure is important and challenging in many clinical studies. Also, for identification of disease-affected regions due to the brain disease, it is extremely necessary to register a population data to the common space simultaneously. In this paper, we propose a new method for simultaneous longitudinal and groupwise registration of a set of longitudinal data acquired from multiple subjects. Our goal is to 1) consistently measure the longitudinal changes from a sequence of longitudinal data acquired from the same subject; and 2) jointly align all image data (acquired from all time points of all subjects) to a hidden common space. To achieve these two goals, we first introduce a set of temporal fiber bundles to explore the spatial-temporal behavior of anatomical changes in each longitudinal data of the same subject. Then, a probabilistic model is built upon the hidden state of spatial smoothness and temporal continuity on the fibers. Finally, the transformation fields that connect each time-point image of each subject to the common space are simultaneously estimated by the expectation maximization (EM) approach, via the maximum a posterior (MAP) estimation of probabilistic models. Promising results are obtained to quantitatively measure the longitudinal changes of hippocampus volume, indicating better performance of our method than the conventional pairwise methods.

摘要

在许多临床研究中,准确测量解剖结构的纵向变化既重要又具有挑战性。此外,为了识别因脑部疾病而受影响的区域,将群体数据同时注册到公共空间是极其必要的。在本文中,我们提出了一种新方法,用于对从多个受试者获取的一组纵向数据进行纵向和分组同时配准。我们的目标是:1)从同一受试者获取的一系列纵向数据中持续测量纵向变化;2)将所有图像数据(从所有受试者的所有时间点获取)联合对齐到一个隐藏的公共空间。为了实现这两个目标,我们首先引入一组时间纤维束来探索同一受试者每个纵向数据中解剖变化的时空行为。然后,基于纤维上空间平滑度和时间连续性的隐藏状态建立一个概率模型。最后,通过期望最大化(EM)方法,经由概率模型的最大后验(MAP)估计,同时估计将每个受试者的每个时间点图像连接到公共空间的变换场。我们获得了有前景的结果,可定量测量海马体体积的纵向变化,表明我们的方法比传统的成对方法具有更好的性能。

相似文献

1
Registration of longitudinal image sequences with implicit template and spatial-temporal heuristics.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):618-25. doi: 10.1007/978-3-642-15745-5_76.
2
Registration of longitudinal brain image sequences with implicit template and spatial-temporal heuristics.
Neuroimage. 2012 Jan 2;59(1):404-21. doi: 10.1016/j.neuroimage.2011.07.026. Epub 2011 Jul 23.
3
A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences.
Neuroimage. 2012 Jan 16;59(2):1275-89. doi: 10.1016/j.neuroimage.2011.07.095. Epub 2011 Aug 22.
4
A novel longitudinal atlas construction framework by groupwise registration of subject image sequences.
Inf Process Med Imaging. 2011;22:283-95. doi: 10.1007/978-3-642-22092-0_24.
5
Robust brain registration using adaptive probabilistic atlas.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):1041-9. doi: 10.1007/978-3-540-85990-1_125.
6
PCA-based groupwise image registration for quantitative MRI.
Med Image Anal. 2016 Apr;29:65-78. doi: 10.1016/j.media.2015.12.004. Epub 2015 Dec 19.
7
Groupwise registration by hierarchical anatomical correspondence detection.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.
8
Groupwise registration with sharp mean.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):570-7. doi: 10.1007/978-3-642-15745-5_70.
9
Temporal groupwise registration for motion modeling.
Inf Process Med Imaging. 2011;22:648-59. doi: 10.1007/978-3-642-22092-0_53.

引用本文的文献

1
Scalable Joint Segmentation and Registration Framework for Infant Brain Images.
Neurocomputing (Amst). 2017 Mar 15;229:54-62. doi: 10.1016/j.neucom.2016.05.107. Epub 2016 Nov 16.
2
Statistical image analysis of longitudinal RAVENS images.
Front Neurosci. 2015 Oct 20;9:368. doi: 10.3389/fnins.2015.00368. eCollection 2015.
3
Multivariate longitudinal shape analysis of human lateral ventricles during the first twenty-four months of life.
PLoS One. 2014 Sep 29;9(9):e108306. doi: 10.1371/journal.pone.0108306. eCollection 2014.
4
Robust measurement of individual localized changes to the aging hippocampus.
Comput Vis Image Underst. 2013 Sep 1;117(9):1128-1137. doi: 10.1016/j.cviu.2012.12.007.
5
4D segmentation of brain MR images with constrained cortical thickness variation.
PLoS One. 2013 Jul 2;8(7):e64207. doi: 10.1371/journal.pone.0064207. Print 2013.
6
Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry.
Neuroimage. 2011 Jul 1;57(1):5-14. doi: 10.1016/j.neuroimage.2011.01.079. Epub 2011 Feb 23.

本文引用的文献

1
Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):297-304. doi: 10.1007/978-3-642-04268-3_37.
2
TPS-HAMMER: improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation.
Neuroimage. 2010 Feb 1;49(3):2225-33. doi: 10.1016/j.neuroimage.2009.10.065. Epub 2009 Oct 28.
3
A Mixture of Transformed Hidden Markov Models for elastic motion estimation.
IEEE Trans Pattern Anal Mach Intell. 2009 Oct;31(10):1817-30. doi: 10.1109/TPAMI.2009.111.
4
A comparison of algorithms for inference and learning in probabilistic graphical models.
IEEE Trans Pattern Anal Mach Intell. 2005 Sep;27(9):1392-416. doi: 10.1109/TPAMI.2005.169.
5
Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping.
Neuroimage. 2004 Apr;21(4):1508-17. doi: 10.1016/j.neuroimage.2003.12.015.
6
Temporal dynamics of brain anatomy.
Annu Rev Biomed Eng. 2003;5:119-45. doi: 10.1146/annurev.bioeng.5.040202.121611.
7
Comparison of methods for measuring longitudinal brain change in cognitive impairment and dementia.
Neurobiol Aging. 2003 Jul-Aug;24(4):537-44. doi: 10.1016/s0197-4580(02)00130-6.
8
HAMMER: hierarchical attribute matching mechanism for elastic registration.
IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39. doi: 10.1109/TMI.2002.803111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验