Suppr超能文献

使用动态和网络特征对阿尔茨海默病的纵向皮质厚度变化进行判别分析。

Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features.

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Neurobiol Aging. 2012 Feb;33(2):427.e15-30. doi: 10.1016/j.neurobiolaging.2010.11.008. Epub 2011 Jan 26.

Abstract

Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.

摘要

磁共振(MR)成像的神经影像学测量,如皮质厚度,在寻找阿尔茨海默病(AD)的生物标志物方面发挥着越来越重要的作用。最近的研究表明,使用基线皮质厚度可以相对较高的精度区分 AD、轻度认知障碍(MCI)和正常对照(NC)。随着大量纵向数据集的可用性增加,也有可能研究皮质厚度的纵向变化及其与 AD 中病理学发展的相关性。在这项研究中,我们最近开发的 4D(空间+时间)厚度测量算法测量了来自阿尔茨海默病神经影像学倡议(ADNI)的 4 个临床组(AD、NC、进行性-MCI 和稳定-MCI)的 152 名受试者的纵向皮质厚度变化。结果发现,4 个临床组在皮质上的灰质(GM)损失的空间分布非常相似。为了充分利用纵向信息并更好地区分 4 组受试者,特别是稳定-MCI 和进行性-MCI 之间的受试者,为每个受试者提取了 3 种不同类别的特征,即:(1)从基线和终线计算得出的静态皮质厚度测量值;(2)皮质变薄动力学,如变薄速度(mm/年)和变薄比(终线/基线);(3)基于不同感兴趣区域(ROI)的纵向厚度变化之间的相关性构建脑网络后计算出的网络特征。通过结合来自 3 个类别特征的互补信息,训练了 2 个分类器来分别诊断 AD 和预测 MCI 受试者向 AD 的转化。在留一交叉验证中,所提出的方法可以以 96.1%的准确率将 AD 患者与 NC 区分开,并且可以在 MCI 患者向 AD 转化前 6 个月以 81.7%(AUC=0.875)的概率检测到他们中的 81.7%(AUC=0.875)。此外,通过分析通过纵向皮质厚度变化构建的脑网络,发现进行性-MCI 组的网络聚类系数(与 AD 病理学的发展相关)显著降低(p<0.02),这表明 AD 导致大脑网络的退化布线效率降低。更有趣的是,还发现 AD 患者的嗅觉皮层区域的网络聚类系数也在降低,这表明嗅觉功能障碍。虽然 ADNI 中未进行嗅觉识别测试,但这一发现与其他与 AD 相关的嗅觉研究一致。

相似文献

1
Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features.
Neurobiol Aging. 2012 Feb;33(2):427.e15-30. doi: 10.1016/j.neurobiolaging.2010.11.008. Epub 2011 Jan 26.
2
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
5
Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.
Neuroimage. 2015 Jan 1;104:398-412. doi: 10.1016/j.neuroimage.2014.10.002. Epub 2014 Oct 12.
7
Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort.
Curr Alzheimer Res. 2009 Aug;6(4):347-61. doi: 10.2174/156720509788929273.
8
Locally linear embedding (LLE) for MRI based Alzheimer's disease classification.
Neuroimage. 2013 Dec;83:148-57. doi: 10.1016/j.neuroimage.2013.06.033. Epub 2013 Jun 21.

引用本文的文献

2
Reorganized brain functional network topology in stable and progressive mild cognitive impairment.
Front Aging Neurosci. 2024 Nov 18;16:1467054. doi: 10.3389/fnagi.2024.1467054. eCollection 2024.
6
Higher cortical thickness/volume in Alzheimer's-related regions: protective factor or risk factor?
Neurobiol Aging. 2023 Sep;129:185-194. doi: 10.1016/j.neurobiolaging.2023.05.004. Epub 2023 May 9.
7
9
MPC-STANet: Alzheimer's Disease Recognition Method Based on Multiple Phantom Convolution and Spatial Transformation Attention Mechanism.
Front Aging Neurosci. 2022 Jun 10;14:918462. doi: 10.3389/fnagi.2022.918462. eCollection 2022.
10
Individual-specific networks for prediction modelling - A scoping review of methods.
BMC Med Res Methodol. 2022 Mar 6;22(1):62. doi: 10.1186/s12874-022-01544-6.

本文引用的文献

1
Groupwise registration with sharp mean.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):570-7. doi: 10.1007/978-3-642-15745-5_70.
2
Consistent 4D cortical thickness measurement for longitudinal neuroimaging study.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):133-42. doi: 10.1007/978-3-642-15745-5_17.
3
Network analysis detects changes in the contralesional hemisphere following stroke.
Neuroimage. 2011 Jan 1;54(1):161-9. doi: 10.1016/j.neuroimage.2010.08.032. Epub 2010 Aug 20.
4
Should olfactory dysfunction be used as a biomarker of Alzheimer's disease?
Expert Rev Neurother. 2010 May;10(5):633-5. doi: 10.1586/ern.10.33.
5
Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model.
J Neurosci. 2010 Jan 13;30(2):505-14. doi: 10.1523/JNEUROSCI.4622-09.2010.
7
Subregional neuroanatomical change as a biomarker for Alzheimer's disease.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20954-9. doi: 10.1073/pnas.0906053106.
8
Cortical thickness analysis to detect progressive mild cognitive impairment: a reference to Alzheimer's disease.
Dement Geriatr Cogn Disord. 2009;28(5):404-12. doi: 10.1159/000256274. Epub 2009 Nov 10.
9
Complex network measures of brain connectivity: uses and interpretations.
Neuroimage. 2010 Sep;52(3):1059-69. doi: 10.1016/j.neuroimage.2009.10.003. Epub 2009 Oct 9.
10
A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging.
Neuroimage. 2009 Nov 1;48(2):371-80. doi: 10.1016/j.neuroimage.2009.06.043. Epub 2009 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验