Suppr超能文献

方向方差调整:基于因子分析的协方差矩阵偏差减少及其在投资组合优化中的应用。

Directional variance adjustment: bias reduction in covariance matrices based on factor analysis with an application to portfolio optimization.

机构信息

Machine Learning Group, Computer Science Department, Technical University of Berlin, Berlin, Germany.

出版信息

PLoS One. 2013 Jul 3;8(7):e67503. doi: 10.1371/journal.pone.0067503. Print 2013.

Abstract

Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.

摘要

稳健可靠的协方差估计在金融和许多其他应用中起着决定性的作用。一类重要的估计量是基于因子模型的。在这里,我们通过广泛的蒙特卡罗模拟表明,来自统计因子分析模型的协方差矩阵表现出一种系统性误差,类似于样本协方差矩阵谱的众所周知的系统性误差。此外,我们引入了方向方差调整(DVA)算法,该算法可以减少系统性误差。在对美国、欧洲和香港股票市场的一项彻底的实证研究中,我们表明,我们提出的方法可以改进投资组合分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ff/3701014/c7903add691c/pone.0067503.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验