Rezzonico R, Gleed R D, Mortola J P
Department of Physiology, McGill University, Montreal, Quebec, Canada.
J Appl Physiol (1985). 1990 Jun;68(6):2274-9. doi: 10.1152/jappl.1990.68.6.2274.
Because chronic hypoxia in the neonatal period has long-term effects on the mechanical properties of the respiratory system (S. Okubo and J. P. Mortola, J. Appl. Physiol. 66: 1772-1778, 1989), we asked whether similar effects would occur after neonatal exposure to hypercapnia. Three groups of rats were used. The first was exposed to 7% CO2 in normoxia from day 1 to 7 after birth and then returned to normocapnia (NB-CO2). The second was exposed to the same level and duration of hypercapnia from day 36 to 42, i.e., approximately 2 wk after weaning (AD-CO2). The third was raised in normoxia and normocapnia (control). At approximately 50 days, i.e., 1-2 wk after puberty, the passive mechanical properties of the respiratory system, lung, and chest were measured during artificial ventilation in the anesthetized and paralyzed animal. No differences were observed between AD-CO2 and control. NB-CO2 had higher compliance of the lung (approximately +40%) and respiratory system (+32%) than control or AD-CO2. Average values of resistance of the total respiratory system, lung, and chest wall were consistently lower in NB-CO2 than in control and AD-CO2, although the magnitude and statistical significance of the decrease depended on the method of measurement. In a separate group of NB-CO2, lung compliance was measured during spontaneous breathing, and it averaged 34% more than in control. The exponential constant of the deflation quasi-static pressure-volume curve of the liquid-filled lungs was also significantly higher than in control.(ABSTRACT TRUNCATED AT 250 WORDS)