Suppr超能文献

基于像空间纹理的输出一致性曲面流可视化。

Image-space texture-based output-coherent surface flow visualization.

机构信息

State Key Lab of CAD&CG, Zhejiang University, Zhejiang, China 321000.

出版信息

IEEE Trans Vis Comput Graph. 2013 Sep;19(9):1476-87. doi: 10.1109/TVCG.2013.62.

Abstract

Image-space line integral convolution (LIC) is a popular scheme for visualizing surface vector fields due to its simplicity and high efficiency. To avoid inconsistencies or color blur during the user interactions, existing approaches employ surface parameterization or 3D volume texture schemes. However, they often require expensive computation or memory cost, and cannot achieve consistent results in terms of both the granularity and color distribution on different scales. This paper introduces a novel image-space surface flow visualization approach that preserves the coherence during user interactions. To make the noise texture under different viewpoints coherent, we propose to precompute a sequence of mipmap noise textures in a coarse-to-fine manner for consistent transition, and map the textures onto each triangle with randomly assigned and constant texture coordinates. Further, a standard image-space LIC is performed to generate the flow texture. The proposed approach is simple and GPU-friendly, and can be easily combined with various texture-based flow visualization techniques. By leveraging viewpoint-dependent backward tracing and mipmap noise phase, our method can be incorporated with the image-based flow visualization (IBFV) technique for coherent visualization of unsteady flows. We demonstrate consistent and highly efficient flow visualization on a variety of data sets.

摘要

基于图像的线积分卷积(LIC)是一种用于可视化曲面向量场的流行方法,因其简单高效而受到广泛关注。为了避免在用户交互过程中出现不一致或颜色模糊的问题,现有的方法采用曲面参数化或 3D 体纹理方案。然而,这些方法通常需要昂贵的计算或内存成本,并且在不同尺度上的粒度和颜色分布方面无法实现一致的结果。本文提出了一种新颖的基于图像的曲面流可视化方法,该方法在用户交互过程中保持了连贯性。为了使不同视角下的噪声纹理保持一致,我们提出了一种自顶向下的方式预计算一系列的 mipmap 噪声纹理,以实现一致的过渡,并使用随机分配且恒定的纹理坐标将纹理映射到每个三角形上。然后,执行标准的基于图像的 LIC 以生成流纹理。所提出的方法简单且适用于 GPU,可以与各种基于纹理的流可视化技术轻松结合。通过利用与视角相关的反向跟踪和 mipmap 噪声相位,我们的方法可以与基于图像的流可视化(IBFV)技术结合,以实现非定常流的一致可视化。我们在各种数据集上展示了一致且高效的流可视化效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验