Suppr超能文献

使用整合了机电耦联的人心室模型进行短 QT 综合征的计算机研究。

In silico investigation of the short QT syndrome, using human ventricle models incorporating electromechanical coupling.

机构信息

Computational Biology, Biological Physics Group, School of Physics and Astronomy, The University of Manchester Manchester, UK.

出版信息

Front Physiol. 2013 Jul 5;4:166. doi: 10.3389/fphys.2013.00166. eCollection 2013.

Abstract

INTRODUCTION

Genetic forms of the Short QT Syndrome (SQTS) arise due to cardiac ion channel mutations leading to accelerated ventricular repolarization, arrhythmias and sudden cardiac death. Results from experimental and simulation studies suggest that changes to refractoriness and tissue vulnerability produce a substrate favorable to re-entry. Potential electromechanical consequences of the SQTS are less well-understood. The aim of this study was to utilize electromechanically coupled human ventricle models to explore electromechanical consequences of the SQTS.

METHODS AND RESULTS

The Rice et al. mechanical model was coupled to the ten Tusscher et al. ventricular cell model. Previously validated K(+) channel formulations for SQT variants 1 and 3 were incorporated. Functional effects of the SQTS mutations on [Ca(2+)] i transients, sarcomere length shortening and contractile force at the single cell level were evaluated with and without the consideration of stretch-activated channel current (I sac). Without I sac, at a stimulation frequency of 1Hz, the SQTS mutations produced dramatic reductions in the amplitude of [Ca(2+)] i transients, sarcomere length shortening and contractile force. When I sac was incorporated, there was a considerable attenuation of the effects of SQTS-associated action potential shortening on Ca(2+) transients, sarcomere shortening and contractile force. Single cell models were then incorporated into 3D human ventricular tissue models. The timing of maximum deformation was delayed in the SQTS setting compared to control.

CONCLUSION

The incorporation of I sac appears to be an important consideration in modeling functional effects of SQT 1 and 3 mutations on cardiac electro-mechanical coupling. Whilst there is little evidence of profoundly impaired cardiac contractile function in SQTS patients, our 3D simulations correlate qualitatively with reported evidence for dissociation between ventricular repolarization and the end of mechanical systole.

摘要

简介

短 QT 综合征(SQTS)的遗传形式是由于心脏离子通道突变导致心室复极加速、心律失常和心源性猝死。实验和模拟研究的结果表明,不应期和组织易损性的变化产生了有利于折返的底物。SQTS 的潜在机电后果了解得还不够。本研究旨在利用机电耦合并联人心室模型来探索 SQTS 的机电后果。

方法和结果

将 Rice 等人的力学模型与 ten Tusscher 等人的心室细胞模型耦联。纳入了用于 SQT 变体 1 和 3 的先前经过验证的 K(+)通道配方。在不考虑拉伸激活通道电流(I sac)和考虑 I sac 的情况下,评估了 SQTS 突变对单细胞水平[Ca(2+)]i 瞬变、肌节缩短和收缩力的功能影响。在刺激频率为 1Hz 时,没有 I sac,SQTS 突变导致 [Ca(2+)]i 瞬变、肌节缩短和收缩力的幅度显著降低。当纳入 I sac 时,与 SQTS 相关的动作电位缩短对 Ca(2+)瞬变、肌节缩短和收缩力的影响有很大的衰减。然后将单细胞模型纳入 3D 人心室组织模型。与对照相比,在 SQTS 情况下,最大变形的时间延迟。

结论

在建模 SQT 1 和 3 突变对心脏机电耦联的功能影响时,纳入 I sac 似乎是一个重要的考虑因素。尽管 SQTS 患者的心脏收缩功能受损证据很少,但我们的 3D 模拟与报告的心室复极与机械收缩末期分离的证据在定性上相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a8/3701879/ab22b5e7beeb/fphys-04-00166-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验