Suppr超能文献

计算研究鉴定 KCNJ2 E299V 突变对心脏泵血能力的影响。

Computational Study to Identify the Effects of the KCNJ2 E299V Mutation in Cardiac Pumping Capacity.

机构信息

Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.

Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.

出版信息

Comput Math Methods Med. 2020 Mar 31;2020:7194275. doi: 10.1155/2020/7194275. eCollection 2020.

Abstract

The KCNJ2 gene mutations induce short QT syndrome (SQT3) by directly increasing the current. There have been many studies on the electrophysiological effects of mutations such as the KCNJ2 D172N that cause the SQT3. However, the KCNJ2 E299V mutation is distinguished from other representative gene mutations that can induce the short QT syndrome (SQT3) in that it increased current by impairing the inward rectification of K channels. The studies of the electromechanical effects on myocardial cells and mechanisms of E299V mutations are limited. Therefore, we investigated the electrophysiological changes and the concomitant mechanical responses according to the expression levels of the KCNJ2 E299V mutation during sinus rhythm and ventricular fibrillation. We performed excitation-contraction coupling simulations using a human ventricular model with both electrophysiological and mechanical properties. In order to observe the electromechanical changes due to the expression of KCNJ2 E299V mutation, the simulations were performed under normal condition (WT), heterogeneous mutation condition (WT/E299V), and pure mutation condition (E299V). First, a single-cell simulation was performed in three types of ventricular cells (endocardial cell, midmyocardial cell, and epicardial cell) to confirm the electrophysiological changes and arrhythmogenesis caused by the KCNJ2 E299V mutation. In three-dimensional sinus rhythm simulations, we compared electrical changes and the corresponding changes in mechanical performance caused by the expression level of E299V mutation. Then, we observed the electromechanical properties of the E299V mutation during ventricular fibrillation using the three-dimensional reentry simulation. The KCNJ2 E299V mutation accelerated the opening of the channel and increased current, resulting in a decrease in action potential duration. Accordingly, the QT interval was reduced by 48% and 60% compared to the WT condition, for the WT/E299V and E299V conditions, respectively. During sustained reentry, the wavelength was reduced due to the KCNJ2 E299V mutation. Furthermore, there was almost no ventricular contraction in both WT/E299V and E299V conditions. We concluded that in both sinus rhythm and fibrillation, the KCNJ2 E299V mutation results in very low contractility regardless of the expression level of mutation and increases the risk of cardiac arrest and cardiac death.

摘要

KCNJ2 基因突变通过直接增加电流诱导短 QT 综合征(SQT3)。已经有许多关于 KCNJ2 D172N 等导致 SQT3 的基因突变的电生理效应的研究。然而,与其他能诱导短 QT 综合征(SQT3)的代表性基因突变不同,KCNJ2 E299V 突变通过损害 K 通道的内向整流来增加电流。关于 KCNJ2 E299V 突变对心肌细胞的机电效应和机制的研究是有限的。因此,我们在窦性节律和心室颤动期间根据 KCNJ2 E299V 突变的表达水平研究了电生理变化和伴随的机械反应。我们使用具有电生理和机械特性的人心室模型进行兴奋-收缩偶联模拟。为了观察 KCNJ2 E299V 突变表达引起的机电变化,在正常条件(WT)、异质性突变条件(WT/E299V)和纯突变条件(E299V)下进行了模拟。首先,在三种心室细胞(心内膜细胞、中层心肌细胞和心外膜细胞)中进行单细胞模拟,以确认 KCNJ2 E299V 突变引起的电生理变化和心律失常发生。在三维窦性节律模拟中,我们比较了 E299V 突变表达水平引起的电变化和相应的机械性能变化。然后,我们使用三维折返模拟观察心室颤动期间 E299V 突变的机电特性。KCNJ2 E299V 突变加速通道的开放并增加电流,导致动作电位持续时间缩短。因此,与 WT 条件相比,WT/E299V 和 E299V 条件下的 QT 间期分别减少了 48%和 60%。在持续折返期间,由于 KCNJ2 E299V 突变,波长缩短。此外,WT/E299V 和 E299V 条件下几乎没有心室收缩。我们得出的结论是,无论突变表达水平如何,在窦性节律和颤动期间,KCNJ2 E299V 突变都会导致心肌收缩力非常低,增加心脏骤停和心脏性死亡的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/7150720/cbd3b5021eb3/CMMM2020-7194275.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验