Suppr超能文献

用于癌症I期临床试验的交互式软件“使用标准化等效毒性评分的等渗设计(ID-NETS©TM)”

Interactive Software "Isotonic Design using Normalized Equivalent Toxicity Score (ID-NETS©TM)" for Cancer Phase I Clinical Trials.

作者信息

Chen Zhengjia, Wang Zhibo, Wang Haibin, Owonikoko Taofeek K, Kowalski Jeanne, Khuri Fadlo R

机构信息

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA ; Biostatistics and Bioinformatics Shared Resource at Winship Cancer Institute, GA 30322, USA.

出版信息

Open Med Inform J. 2013 Apr 5;7:8-17. doi: 10.2174/1874431101307010008. Print 2013.

Abstract

Isotonic Design using Normalized Equivalent Toxicity Score (ID-NETS) is a novel Phase I design that integrates the novel toxicity scoring system originally proposed by Chen et al. [1] and the original Isotonic Design proposed by Leung et al. [2]. ID-NETS has substantially improved the accuracy of maximum tolerated dose (MTD) estimation and trial efficiency in the Phase I clinical trial setting by fully utilizing all toxicities experienced by each patient and treating toxicity response as a quasi-continuous variable instead of a binary indicator of dose limiting toxicity (DLT). To facilitate the incorporation of the ID-NETS method into the design and conduct of Phase I clinical trials, we have designed and developed a user-friendly software, ID-NETS(©TM), which has two functions: 1) Calculating the recommended dose for the subsequent patient cohort using available completed data; and 2) Performing simulations to obtain the operating characteristics of a trial designed with ID-NETS. Currently, ID-NETS(©TM)v1.0 is available for free download at http://winshipbbisr.emory.edu/IDNETS.html.

摘要

使用标准化等效毒性评分的等渗设计(ID-NETS)是一种新型的I期设计,它整合了Chen等人[1]最初提出的新型毒性评分系统和Leung等人[2]提出的原始等渗设计。ID-NETS通过充分利用每位患者经历的所有毒性,并将毒性反应视为一个准连续变量而非剂量限制毒性(DLT)的二元指标,在I期临床试验环境中显著提高了最大耐受剂量(MTD)估计的准确性和试验效率。为便于将ID-NETS方法纳入I期临床试验的设计和实施,我们设计并开发了一款用户友好的软件ID-NETS(©TM),它有两个功能:1)使用可用的完整数据计算后续患者队列的推荐剂量;2)进行模拟以获得采用ID-NETS设计的试验的操作特征。目前,ID-NETS(©TM)v1.0可在http://winshipbbisr.emory.edu/IDNETS.html免费下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/992a/3680993/dec1c94df806/TOMINFOJ-7-8_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验