Bekele B Nebiyou, Li Yisheng, Ji Yuan
Department of Biostatistics, Division of Quantitative Sciences, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
Biometrics. 2010 Jun;66(2):541-8. doi: 10.1111/j.1541-0420.2009.01297.x. Epub 2009 Jul 23.
We propose a Bayesian dose-finding design that accounts for two important factors, the severity of toxicity and heterogeneity in patients' susceptibility to toxicity. We consider toxicity outcomes with various levels of severity and define appropriate scores for these severity levels. We then use a multinomial-likelihood function and a Dirichlet prior to model the probabilities of these toxicity scores at each dose, and characterize the overall toxicity using an average toxicity score (ATS) parameter. To address the issue of heterogeneity in patients' susceptibility to toxicity, we categorize patients into different risk groups based on their susceptibility. A Bayesian isotonic transformation is applied to induce an order-restricted posterior inference on the ATS. We demonstrate the performance of the proposed dose-finding design using simulations based on a clinical trial in multiple myeloma.
我们提出了一种贝叶斯剂量探索设计,该设计考虑了两个重要因素,即毒性的严重程度和患者对毒性易感性的异质性。我们考虑具有不同严重程度水平的毒性结果,并为这些严重程度水平定义适当的分数。然后,我们使用多项似然函数和狄利克雷先验来对每个剂量下这些毒性分数的概率进行建模,并使用平均毒性分数(ATS)参数来表征总体毒性。为了解决患者对毒性易感性的异质性问题,我们根据患者的易感性将其分为不同的风险组。应用贝叶斯等渗变换对ATS进行序贯受限的后验推断。我们通过基于多发性骨髓瘤临床试验的模拟来证明所提出的剂量探索设计的性能。