Suppr超能文献

基于平均毒性评分的风险组特异性剂量探索

Risk-group-specific dose finding based on an average toxicity score.

作者信息

Bekele B Nebiyou, Li Yisheng, Ji Yuan

机构信息

Department of Biostatistics, Division of Quantitative Sciences, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

出版信息

Biometrics. 2010 Jun;66(2):541-8. doi: 10.1111/j.1541-0420.2009.01297.x. Epub 2009 Jul 23.

Abstract

We propose a Bayesian dose-finding design that accounts for two important factors, the severity of toxicity and heterogeneity in patients' susceptibility to toxicity. We consider toxicity outcomes with various levels of severity and define appropriate scores for these severity levels. We then use a multinomial-likelihood function and a Dirichlet prior to model the probabilities of these toxicity scores at each dose, and characterize the overall toxicity using an average toxicity score (ATS) parameter. To address the issue of heterogeneity in patients' susceptibility to toxicity, we categorize patients into different risk groups based on their susceptibility. A Bayesian isotonic transformation is applied to induce an order-restricted posterior inference on the ATS. We demonstrate the performance of the proposed dose-finding design using simulations based on a clinical trial in multiple myeloma.

摘要

我们提出了一种贝叶斯剂量探索设计,该设计考虑了两个重要因素,即毒性的严重程度和患者对毒性易感性的异质性。我们考虑具有不同严重程度水平的毒性结果,并为这些严重程度水平定义适当的分数。然后,我们使用多项似然函数和狄利克雷先验来对每个剂量下这些毒性分数的概率进行建模,并使用平均毒性分数(ATS)参数来表征总体毒性。为了解决患者对毒性易感性的异质性问题,我们根据患者的易感性将其分为不同的风险组。应用贝叶斯等渗变换对ATS进行序贯受限的后验推断。我们通过基于多发性骨髓瘤临床试验的模拟来证明所提出的剂量探索设计的性能。

相似文献

1
Risk-group-specific dose finding based on an average toxicity score.
Biometrics. 2010 Jun;66(2):541-8. doi: 10.1111/j.1541-0420.2009.01297.x. Epub 2009 Jul 23.
3
4
A Bayesian dose-finding design incorporating toxicity data from multiple treatment cycles.
Stat Med. 2017 Jan 15;36(1):67-80. doi: 10.1002/sim.7134. Epub 2016 Sep 15.
5
Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
Stat Med. 2015 Feb 28;34(5):859-75. doi: 10.1002/sim.6376. Epub 2014 Nov 21.
6
Bayesian Semi-parametric Design (BSD) for adaptive dose-finding with multiple strata.
J Biopharm Stat. 2020 Sep 2;30(5):806-820. doi: 10.1080/10543406.2020.1730870. Epub 2020 Mar 4.
7
A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation.
Clin Trials. 2020 Oct;17(5):522-534. doi: 10.1177/1740774520932130. Epub 2020 Jul 7.
8
BOIN-ET: Bayesian optimal interval design for dose finding based on both efficacy and toxicity outcomes.
Pharm Stat. 2018 Jul;17(4):383-395. doi: 10.1002/pst.1864. Epub 2018 Apr 26.
9
STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials.
Stat Med. 2017 Nov 20;36(26):4106-4120. doi: 10.1002/sim.7428. Epub 2017 Aug 7.
10
Optimization of dose selection using multiple surrogates of toxicity as a continuous variable in phase I cancer trial.
Contemp Clin Trials. 2022 Feb;113:106657. doi: 10.1016/j.cct.2021.106657. Epub 2021 Dec 22.

引用本文的文献

1
A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose Combinations with Ordinal Toxicity Grades.
Stats (Basel). 2020 Sep;3(3):221-238. doi: 10.3390/stats3030017. Epub 2020 Jul 17.
2
Sequential designs for individualized dosing in phase I cancer clinical trials.
Contemp Clin Trials. 2017 Dec;63:51-58. doi: 10.1016/j.cct.2016.08.018. Epub 2016 Aug 31.
3
Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
Stat Med. 2015 Feb 28;34(5):859-75. doi: 10.1002/sim.6376. Epub 2014 Nov 21.
4
Escalation with overdose control using all toxicities and time to event toxicity data in cancer Phase I clinical trials.
Contemp Clin Trials. 2014 Mar;37(2):322-32. doi: 10.1016/j.cct.2014.02.004. Epub 2014 Feb 12.
6
Dose escalation with overdose control using a quasi-continuous toxicity score in cancer Phase I clinical trials.
Contemp Clin Trials. 2012 Sep;33(5):949-58. doi: 10.1016/j.cct.2012.04.007. Epub 2012 Apr 25.
7
Continual reassessment method with multiple toxicity constraints.
Biostatistics. 2011 Apr;12(2):386-98. doi: 10.1093/biostatistics/kxq062. Epub 2010 Sep 28.

本文引用的文献

2
Dose finding for continuous and ordinal outcomes with a monotone objective function: a unified approach.
Biometrics. 2009 Mar;65(1):307-15. doi: 10.1111/j.1541-0420.2008.01045.x. Epub 2008 May 13.
3
Monitoring late-onset toxicities in phase I trials using predicted risks.
Biostatistics. 2008 Jul;9(3):442-57. doi: 10.1093/biostatistics/kxm044. Epub 2007 Dec 14.
4
The continual reassessment method for multiple toxicity grades: a Bayesian quasi-likelihood approach.
Biometrics. 2007 Mar;63(1):173-9. doi: 10.1111/j.1541-0420.2006.00666.x.
5
Isotonic designs for phase I cancer clinical trials with multiple risk groups.
Clin Trials. 2004;1(6):499-508. doi: 10.1191/1740774504cn058oa.
6
Bivariate isotonic design for dose-finding with ordered groups.
Stat Med. 2006 Jun 30;25(12):2018-26. doi: 10.1002/sim.2312.
7
Patient characteristics compete with dose as predictors of acute treatment toxicity in early phase clinical trials.
Clin Cancer Res. 2004 Jul 15;10(14):4645-51. doi: 10.1158/1078-0432.CCR-03-0535.
9
Continual reassessment method for ordered groups.
Biometrics. 2003 Jun;59(2):430-40. doi: 10.1111/1541-0420.00050.
10
Bayesian inference on order-constrained parameters in generalized linear models.
Biometrics. 2003 Jun;59(2):286-95. doi: 10.1111/1541-0420.00035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验