Suppr超能文献

快速半同胞群体重建:理论与算法

Fast half-sibling population reconstruction: theory and algorithms.

作者信息

Dexter Daniel, Brown Daniel G

机构信息

David R Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

出版信息

Algorithms Mol Biol. 2013 Jul 12;8(1):20. doi: 10.1186/1748-7188-8-20.

Abstract

BACKGROUND

Kinship inference is the task of identifying genealogically related individuals. Kinship information is important for determining mating structures, notably in endangered populations. Although many solutions exist for reconstructing full sibling relationships, few exist for half-siblings.

RESULTS

We consider the problem of determining whether a proposed half-sibling population reconstruction is valid under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer program that identifies the minimum number of individuals that must be removed from a population in order for the reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian genetics, which is strikingly fast. The software is available at http://github.com/ddexter/SibJoin.git+.

CONCLUSIONS

Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms. The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate.

摘要

背景

亲属关系推断是识别有血缘关系个体的任务。亲属关系信息对于确定交配结构很重要,特别是在濒危种群中。虽然存在许多用于重建全同胞关系的解决方案,但用于半同胞关系的却很少。

结果

我们考虑在孟德尔遗传假设下确定提议的半同胞种群重建是否有效的问题。我们表明这个问题是NP完全问题,并提供了一个0/1整数规划,该规划可确定为使重建有效必须从种群中移除的最少个体数量。我们还提出了SibJoin,一种基于孟德尔遗传学的启发式聚类方法,它速度极快。该软件可在http://github.com/ddexter/SibJoin.git+获取。

结论

我们的SibJoin算法相当准确,并且比现有算法快数千倍。该启发式方法用于推断一个种群的半同胞结构,直到最近这个种群规模太大而无法评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9933/3738158/c7e040d4f288/1748-7188-8-20-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验