IEEE Trans Biomed Circuits Syst. 2011 Jun;5(3):244-52. doi: 10.1109/TBCAS.2011.2109000.
This paper describes a single transistor floating-gate synapse device that can be used to store a weight in a nonvolatile manner, compute a biological EPSP, and demonstrate biological learning rules such as Long-Term Potentiation, LTD, and spike-time dependent plasticity. We also describe a highly scalable architecture of a matrix of synapses to implement the described learning rules. Parameters for weight update in the 0.35 um process have been extracted and can be used to predict the change in weight based on time difference between pre- and post-synaptic spike times.
本文描述了一种单晶体管浮栅突触器件,可用于以非易失方式存储权重,计算生物 EPSP,并演示生物学习规则,如长时程增强(LTP)和尖峰时间依赖性可塑性(STDP)。我们还描述了一种用于实现所描述学习规则的突触矩阵的高度可扩展架构。已经提取了 0.35 μm 工艺中权重更新的参数,可用于根据前后突触尖峰时间之间的时间差预测权重的变化。