Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
Int J Numer Method Biomed Eng. 2013 Nov;29(11):1176-91. doi: 10.1002/cnm.2564. Epub 2013 Jul 12.
We propose to couple the method of fundamental solutions (MFS) to the force coupling method (FCM). The resulting method is an efficient, easy to program, meshless method for flows at low Reynolds numbers with finite-size particles. In such an approach, the flow domain is extended across the solid particle phase, and the flow is approximated by a superposition of singular Stokeslets positioned outside the flow domain and finite-size multipoles collocated with the particle. To improve the efficiency of the coupling, we propose new MFS quadratures for the computation of the volume integrals required for the FCM. These are exact and do not require the expensive evaluation of Stokeslets. The proposed method has been developed in the context of investigations of the fluid dynamics of canalithiasis, that is, a pathological condition of the semicircular canals of the inner ear. Numerical examples are presented to illustrate the applicability of the method.
我们建议将基本解方法 (MFS) 与力耦合法 (FCM) 相结合。由此得到的方法是一种高效、易于编程的无网格方法,适用于具有有限大小颗粒的低雷诺数流动。在这种方法中,流域扩展到固体颗粒相之外,并通过在流域外放置奇异 Stokeslets 的叠加来近似流,有限大小的多极子与颗粒重合。为了提高耦合效率,我们提出了新的 MFS 求积公式,用于计算 FCM 所需的体积积分。这些是精确的,不需要昂贵的 Stokeslet 评估。所提出的方法是在研究耳石器流体动力学的背景下开发的,即内耳半规管的一种病理状况。给出了数值示例来说明该方法的适用性。