Suppr超能文献

使用人工神经网络预测婴儿发育障碍。

Predicting developmental disorder in infants using an artificial neural network.

作者信息

Soleimani Farin, Teymouri Robab, Biglarian Akbar

机构信息

Pediatric Neurorehabilitation Research Center, University of Social Welfare & Rehabilitation Sciences,Tehran, Iran.

出版信息

Acta Med Iran. 2013 Jul 13;51(6):347-52.

Abstract

Early recognition of developmental disorders is an important goal, and equally important is avoiding misdiagnosing a disorder in a healthy child without pathology. The aim of the present study was to develop an artificial neural network using perinatal information to predict developmental disorder at infancy. A total of 1,232 mother-child dyads were recruited from 6,150 in the original data of Karaj, Alborz Province, Iran. Thousands of variables are examined in this data including basic characteristics, medical history, and variables related to infants.  The validated Infant Neurological International Battery test was employed to assess the infant's development. The concordance indexes showed that true prediction of developmental disorder in the artificial neural network model, compared to the logistic regression model, was 83.1% vs. 79.5% and the area under ROC curves, calculated from testing data, were 0.79 and 0.68, respectively. In addition, specificity and sensitivity of the ANN model vs. LR model was calculated 93.2% vs. 92.7% and 39.1% vs. 21.7%. An artificial neural network performed significantly better than a logistic regression model.

摘要

早期识别发育障碍是一个重要目标,同样重要的是避免将没有病理问题的健康儿童误诊为患有某种疾病。本研究的目的是利用围产期信息开发一种人工神经网络,以预测婴儿期的发育障碍。从伊朗阿尔伯兹省卡拉季原始数据中的6150对母婴二元组中总共招募了1232对。该数据中检查了数千个变量,包括基本特征、病史以及与婴儿相关的变量。采用经过验证的国际婴儿神经学综合测试来评估婴儿的发育情况。一致性指数显示,与逻辑回归模型相比,人工神经网络模型对发育障碍的真实预测率分别为83.1%和79.5%,根据测试数据计算的ROC曲线下面积分别为0.79和0.68。此外,人工神经网络模型与逻辑回归模型的特异性和敏感性分别计算为93.2%对92.7%以及39.1%对21.7%。人工神经网络的表现明显优于逻辑回归模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验