Suppr超能文献

MinC 蛋白通过优先与结合 GDP 的亚基相互作用缩短 FtsZ 原丝。

MinC protein shortens FtsZ protofilaments by preferentially interacting with GDP-bound subunits.

机构信息

Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.

出版信息

J Biol Chem. 2013 Aug 23;288(34):24625-35. doi: 10.1074/jbc.M113.483222. Epub 2013 Jul 12.

Abstract

The interaction of MinC with FtsZ and its effects on FtsZ polymerization were studied under close to physiological conditions by a combination of biophysical methods. The Min system is a widely conserved mechanism in bacteria that ensures the correct placement of the division machinery at midcell. MinC is the component of this system that effectively interacts with FtsZ and inhibits the formation of the Z-ring. Here we report that MinC produces a concentration-dependent reduction in the size of GTP-induced FtsZ protofilaments (FtsZ-GTP) as demonstrated by analytical ultracentrifugation, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. Our experiments show that, despite being shorter, FtsZ protofilaments maintain their narrow distribution in size in the presence of MinC. The protein had the same effect regardless of its addition prior to or after FtsZ polymerization. Fluorescence anisotropy measurements indicated that MinC bound to FtsZ-GDP with a moderate affinity (apparent KD ∼10 μM at 100 mm KCl and pH 7.5) very close to the MinC concentration corresponding to the midpoint of the inhibition of FtsZ assembly. Only marginal binding of MinC to FtsZ-GTP protofilaments was observed by analytical ultracentrifugation and fluorescence correlation spectroscopy. Remarkably, MinC effects on FtsZ-GTP protofilaments and binding affinity to FtsZ-GDP were strongly dependent on ionic strength, being severely reduced at 500 mM KCl compared with 100 mM KCl. Our results support a mechanism in which MinC interacts with FtsZ-GDP, resulting in smaller protofilaments of defined size and having the same effect on both preassembled and growing FtsZ protofilaments.

摘要

在接近生理条件下,通过结合生物物理方法,研究了 MinC 与 FtsZ 的相互作用及其对 FtsZ 聚合的影响。Min 系统是细菌中广泛保守的机制,可确保分裂机制在细胞中部正确定位。MinC 是该系统的组成部分,可有效与 FtsZ 相互作用并抑制 Z 环的形成。在这里,我们报告 MinC 产生浓度依赖性的 GTP 诱导的 FtsZ 原丝(FtsZ-GTP)大小减小,如分析超速离心,动态光散射,荧光相关光谱和电子显微镜所示。我们的实验表明,尽管较短,但 FtsZ 原丝在 MinC 存在下保持其大小的窄分布。该蛋白质具有相同的效果,无论其在 FtsZ 聚合之前或之后添加。荧光各向异性测量表明,MinC 与 FtsZ-GDP 的结合具有适度的亲和力(在 100 mM KCl 和 pH 7.5 下,表观 KD ∼10 μM),非常接近抑制 FtsZ 组装的中点对应的 MinC 浓度。通过分析超速离心和荧光相关光谱仅观察到 MinC 对 FtsZ-GTP 原丝的边缘结合。令人惊讶的是,MinC 对 FtsZ-GTP 原丝的影响及其与 FtsZ-GDP 的结合亲和力强烈依赖于离子强度,与 100 mM KCl 相比,在 500 mM KCl 下严重降低。我们的结果支持 MinC 与 FtsZ-GDP 相互作用的机制,导致具有明确定义大小的较小原丝,并且对预组装和生长的 FtsZ 原丝均具有相同的作用。

相似文献

10
MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation.MinCDE 利用 FtsZ 丝的动态特性进行空间调节。
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1192-200. doi: 10.1073/pnas.1317764111. Epub 2014 Mar 18.

引用本文的文献

6
C-terminal eYFP fusion impairs MinE function.C 端 eYFP 融合会损害 MinE 功能。
Open Biol. 2020 May;10(5):200010. doi: 10.1098/rsob.200010. Epub 2020 May 27.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验