Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
Open Biol. 2020 May;10(5):200010. doi: 10.1098/rsob.200010. Epub 2020 May 27.
The Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining , and approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.
Min 系统在细胞分裂过程中对于隔膜环在细胞中部的正确放置起着重要作用。MinE 与膜结合的 ATP 酶 MinD 形成一个从极到极的空间振荡器,导致 MinD 浓度在细胞中部最低。直接抑制隔膜起始蛋白 FtsZ 的 MinC 与膜上的 MinD 形成复合物,反映了其极性梯度。因此,MinC 介导的 FtsZ 抑制发生在远离细胞中部的地方。通过使用荧光标记的 Min 蛋白的延时显微镜,经常在活细胞中研究 Min 振荡。在这里,我们表明,尽管增强型黄色荧光蛋白(eYFP)与 MinE 的 C 端融合允许在一系列蛋白浓度下发生振荡,但它会损害其功能。通过结合 、 和 方法,我们证明 eYFP 会损害 MinE 从 MinD 上置换 MinC 的能力、刺激 MinD ATP 酶活性以及直接与膜结合的能力。此外,我们揭示 MinE-eYFP 容易聚集。 分析预测其他荧光蛋白也可能损害 MinE 的几种功能,这表明这里呈现的结果并非特定于 eYFP。