Suppr超能文献

利用电子健康数据来源和失眠严重程度指数识别睡眠中心人群中的失眠。

Identification of insomnia in a sleep center population using electronic health data sources and the insomnia severity index.

机构信息

O'Brien Centre for the Health Sciences Program, University of Calgary, Alberta, Canada.

出版信息

J Clin Sleep Med. 2013 Jul 15;9(7):655-60. doi: 10.5664/jcsm.2830.

Abstract

STUDY OBJECTIVES

To assess the validity and efficacy of using electronic health data to identify a physician diagnosis of insomnia in a population of patients referred for testing at a tertiary sleep center.

METHODS

Retrospective cohort study in a tertiary sleep center in Calgary, Alberta, Canada. Cohort consisted of 1,207 patients referred for sleep diagnostic testing and/or assessment by a sleep physician. Two sleep physicians independently assigned each patient a primary sleep diagnosis. Univariate logistic regression was used to identify variables that were predictive for insomnia from online questionnaire and diagnostic testing data. Diagnostic algorithms derived from these predictors and from the Insomnia Severity Index were evaluated against physician diagnosis as a reference standard.

RESULTS

The combination of self-reported sleep latency > 20 minutes, total sleep time < 6.5 hours per night, the inability to fall asleep after waking, BMI < 27 kg/m(2), and Epworth Sleepiness Scale score < 9 had very high specificity (99.3%) for diagnosing insomnia; however, sensitivity was poor (11.8%). Other algorithms derived from these data had either high sensitivity or high specificity. No combination of variables yielded simultaneous high sensitivity and specificity. Likewise, the Insomnia Severity Index can be highly sensitive or highly specific at identifying insomnia, but not both.

CONCLUSIONS

Diagnostic algorithms derived from electronic data can provide high specificity or high sensitivity for identifying insomnia.

摘要

研究目的

评估在一个接受三级睡眠中心检查的患者群体中,使用电子健康数据来识别医生对失眠的诊断的有效性和功效。

方法

这是加拿大阿尔伯塔省卡尔加里市的一个三级睡眠中心的回顾性队列研究。队列包括 1207 名因睡眠诊断测试和/或睡眠医生评估而被转介的患者。两位睡眠医生独立为每位患者分配一个主要睡眠诊断。单变量逻辑回归用于从在线问卷和诊断测试数据中识别出对失眠有预测性的变量。从这些预测因素和失眠严重程度指数得出的诊断算法与医生诊断作为参考标准进行了评估。

结果

自我报告的入睡潜伏期>20 分钟、总睡眠时间<每晚 6.5 小时、醒来后无法入睡、BMI<27kg/m²和 Epworth 嗜睡量表评分<9 与诊断失眠的特异性非常高(99.3%);然而,敏感性较差(11.8%)。从这些数据中得出的其他算法要么具有很高的敏感性,要么具有很高的特异性。没有任何变量组合能同时具有高敏感性和特异性。同样,失眠严重程度指数在识别失眠方面可以具有很高的敏感性或特异性,但不能同时具有。

结论

从电子数据中得出的诊断算法可以提供高特异性或高敏感性来识别失眠。

相似文献

8
ISI-3: evaluation of a brief screening tool for insomnia.ISI-3:一种简短失眠筛查工具的评估
Sleep Med. 2021 Jun;82:104-109. doi: 10.1016/j.sleep.2020.08.027. Epub 2020 Aug 27.

引用本文的文献

3
Measurements and status of sleep quality in patients with cancers.癌症患者的睡眠质量测量和状况。
Support Care Cancer. 2018 Feb;26(2):405-414. doi: 10.1007/s00520-017-3927-x. Epub 2017 Oct 23.
4
Exercise and Sleep in Community-Dwelling Older Adults.社区居住老年人的运动与睡眠
Curr Sleep Med Rep. 2015;1(4):232-240. doi: 10.1007/s40675-015-0028-6.
7
The nature of stable insomnia phenotypes.稳定失眠表型的本质。
Sleep. 2015 Jan 1;38(1):127-38. doi: 10.5665/sleep.4338.

本文引用的文献

4
Prevalence of insomnia and its treatment in Canada.加拿大失眠症的患病率及其治疗情况。
Can J Psychiatry. 2011 Sep;56(9):540-8. doi: 10.1177/070674371105600905.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验