Inserm, UMR1043, Toulouse, France.
PLoS Pathog. 2013;9(7):e1003437. doi: 10.1371/journal.ppat.1003437. Epub 2013 Jul 11.
In Escherichia coli, the biosynthetic pathways of several small iron-scavenging molecules known as siderophores (enterobactin, salmochelins and yersiniabactin) and of a genotoxin (colibactin) are known to require a 4'-phosphopantetheinyl transferase (PPTase). Only two PPTases have been clearly identified: EntD and ClbA. The gene coding for EntD is part of the core genome of E. coli, whereas ClbA is encoded on the pks pathogenicity island which codes for colibactin. Interestingly, the pks island is physically associated with the high pathogenicity island (HPI) in a subset of highly virulent E. coli strains. The HPI carries the gene cluster required for yersiniabactin synthesis except for a gene coding its cognate PPTase. Here we investigated a potential interplay between the synthesis pathways leading to the production of siderophores and colibactin, through a functional interchangeability between EntD and ClbA. We demonstrated that ClbA could contribute to siderophores synthesis. Inactivation of both entD and clbA abolished the virulence of extra-intestinal pathogenic E. coli (ExPEC) in a mouse sepsis model, and the presence of either functional EntD or ClbA was required for the survival of ExPEC in vivo. This is the first report demonstrating a connection between multiple phosphopantetheinyl-requiring pathways leading to the biosynthesis of functionally distinct secondary metabolites in a given microorganism. Therefore, we hypothesize that the strict association of the pks island with HPI has been selected in highly virulent E. coli because ClbA is a promiscuous PPTase that can contribute to the synthesis of both the genotoxin and siderophores. The data highlight the complex regulatory interaction of various virulence features with different functions. The identification of key points of these networks is not only essential to the understanding of ExPEC virulence but also an attractive and promising target for the development of anti-virulence therapy strategies.
在大肠杆菌中,几种被称为铁抢夺小分子的生物合成途径(肠杆菌素、沙门菌素和耶尔森菌素)和一种遗传毒素(科里菌素)的合成途径需要一种 4'-磷酸泛酰巯基乙胺转移酶(PPTase)。目前只明确鉴定出两种 PPTase:EntD 和 ClbA。编码 EntD 的基因是大肠杆菌核心基因组的一部分,而 ClbA 则编码在编码科里菌素的 pks 致病岛。有趣的是,在一部分高致病性大肠杆菌菌株中,pks 岛与高致病性岛(HPI)在物理上相关联。HPI 携带合成耶尔森菌素所需的基因簇,除了编码其同源 PPTase 的基因外。在这里,我们通过 EntD 和 ClbA 的功能可互换性,研究了导致产生铁抢夺小分子和科里菌素的合成途径之间的潜在相互作用。我们证明了 ClbA 可以有助于铁抢夺小分子的合成。在小鼠败血症模型中,entD 和 clbA 的同时失活消除了肠外致病性大肠杆菌(ExPEC)的毒力,并且在体内 ExPEC 的存活需要功能性 EntD 或 ClbA 的存在。这是第一个报道在给定微生物中连接多个需要磷酸泛酰巯基乙胺的途径,导致功能不同的次生代谢物生物合成的报告。因此,我们假设 pks 岛与 HPI 的严格关联是在高致病性大肠杆菌中选择的,因为 ClbA 是一种混杂的 PPTase,可以有助于遗传毒素和铁抢夺小分子的合成。这些数据突出了具有不同功能的各种毒力特征之间的复杂调控相互作用。这些网络的关键节点的识别不仅对了解 ExPEC 的毒力至关重要,而且也是开发抗毒力治疗策略的一个有吸引力和有前途的目标。