Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands), Fax: (+31) 071-527-4451.
ChemSusChem. 2013 Sep;6(9):1659-67. doi: 10.1002/cssc.201300443. Epub 2013 Jul 15.
Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte.
在中性介质中,固体金属电极上 5-羟甲基糠醛(HMF)电催化加氢为 2,5-二羟甲基呋喃(DHMF)或其他物质,如 2,5-二甲基呋喃,在没有和有葡萄糖存在的情况下都进行了研究。通过将伏安法与在线产物分析(使用 HPLC)相结合来研究该反应,该方法可提供有关反应产物的定性和定量信息,作为电极电势的函数。三组催化剂对以下物质具有不同的选择性:(1) DHMF(Fe、Ni、Ag、Zn、Cd 和 In)、(2) DHMF 和其他产物(Pd、Al、Bi 和 Pb),这取决于施加的电势,以及(3) 其他产物(C o、Au、Cu、Sn 和 Sb),通过 HMF 氢解。电催化 HMF 加氢的速率与催化剂的依赖性不强,因为在 HMF 存在下,所有催化剂的起始电势都相似(-0.5±0.2 V)。然而,催化剂的固有特性决定了向 DHMF 或其他产物的反应途径。Ag 对 DHMF 形成表现出最高的活性(高达 13.1 mM·cm(-2),选择性>85%)。在所有金属上,HMF 加氢都比葡萄糖加氢快。对于过渡金属,葡萄糖的存在增强了 DHMF 的形成并抑制了 HMF 的氢解。对于 Zn、Cd 和 In 等较差的金属,葡萄糖增强了 DHMF 的形成;然而,在 Bi、Pb、Sn 和 Sb 存在下,其贡献是有限的。值得注意的是,在 HMF 存在下,葡萄糖的加氢本身被大大抑制甚至不存在。HMF 还原的第一个电子转移步骤与金属无关,这表明与质子从电解质中的水直接转移有关的非催化反应。