Suppr超能文献

新型利尿剂靶点。

Novel diuretic targets.

机构信息

T4208 Medical Center North, 1161 21st Ave. South, Nashville, TN 37232.

出版信息

Am J Physiol Renal Physiol. 2013 Oct 1;305(7):F931-42. doi: 10.1152/ajprenal.00230.2013. Epub 2013 Jul 17.

Abstract

As the molecular revolution continues to inform a deeper understanding of disease mechanisms and pathways, there exist unprecedented opportunities for translating discoveries at the bench into novel therapies for improving human health. Despite the availability of several different classes of antihypertensive medications, only about half of the 67 million Americans with hypertension manage their blood pressure appropriately. A broader selection of structurally diverse antihypertensive drugs acting through different mechanisms would provide clinicians with greater flexibility in developing effective treatment regimens for an increasingly diverse and aging patient population. An emerging body of physiological, genetic, and pharmacological evidence has implicated several renal ion-transport proteins, or regulators thereof, as novel, yet clinically unexploited, diuretic targets. These include the renal outer medullary potassium channel, ROMK (Kir1.1), Kir4.1/5.1 potassium channels, ClC-Ka/b chloride channels, UTA/B urea transporters, the chloride/bicarbonate exchanger pendrin, and the STE20/SPS1-related proline/alanine-rich kinase (SPAK). The molecular pharmacology of these putative targets is poorly developed or lacking altogether; however, recent efforts by a few academic and pharmaceutical laboratories have begun to lessen this critical barrier. Here, we review the evidence in support of the aforementioned proteins as novel diuretic targets and highlight examples where progress toward developing small-molecule pharmacology has been made.

摘要

随着分子革命不断深入了解疾病的机制和途径,将实验室的发现转化为改善人类健康的新型疗法的机会前所未有。尽管有几种不同类别的抗高血压药物,但只有大约一半的 6700 万美国高血压患者能够适当控制血压。更广泛的选择结构不同的通过不同机制作用的抗高血压药物将为临床医生提供更大的灵活性,为日益多样化和老龄化的患者群体制定有效的治疗方案。越来越多的生理、遗传和药理学证据表明,几种肾脏离子转运蛋白或其调节剂作为新型但尚未在临床上开发的利尿剂靶点。这些包括肾脏外髓质钾通道、ROMK(Kir1.1)、Kir4.1/5.1 钾通道、ClC-Ka/b 氯离子通道、UTA/B 尿素转运体、氯离子/碳酸氢盐交换体 pendrin 和 STE20/SPS1 相关脯氨酸/丙氨酸丰富激酶(SPAK)。这些潜在靶点的分子药理学尚未得到充分发展或完全缺乏;然而,一些学术和制药实验室最近的努力已经开始减少这一关键障碍。在这里,我们回顾了支持上述蛋白作为新型利尿剂靶点的证据,并强调了在开发小分子药理学方面取得进展的例子。

相似文献

1
Novel diuretic targets.
Am J Physiol Renal Physiol. 2013 Oct 1;305(7):F931-42. doi: 10.1152/ajprenal.00230.2013. Epub 2013 Jul 17.
3
The therapeutic potential of targeting the K1.1 (renal outer medullary K) channel.
Future Med Chem. 2017 Oct;9(16):1963-1977. doi: 10.4155/fmc-2017-0083. Epub 2017 Oct 27.
4
Emerging Targets of Diuretic Therapy.
Clin Pharmacol Ther. 2017 Sep;102(3):420-435. doi: 10.1002/cpt.754. Epub 2017 Jul 10.
6
Inhibitors of the renal outer medullary potassium channel: a patent review.
Expert Opin Ther Pat. 2015;25(9):1035-51. doi: 10.1517/13543776.2015.1050792. Epub 2015 May 26.
7
Inhibition of ROMK blocks macula densa tubuloglomerular feedback yet causes renal vasoconstriction in anesthetized rats.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F1120-F1127. doi: 10.1152/ajprenal.00662.2016. Epub 2017 Feb 22.
8
Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel.
Mol Pharmacol. 2011 Jan;79(1):42-50. doi: 10.1124/mol.110.066928. Epub 2010 Oct 6.
9
Discovery of MK-8153, a Potent and Selective ROMK Inhibitor and Novel Diuretic/Natriuretic.
J Med Chem. 2021 Jun 10;64(11):7691-7701. doi: 10.1021/acs.jmedchem.1c00406. Epub 2021 May 26.

引用本文的文献

1
Inwardly rectifying potassium channels: Critical insights for insect species and Apis mellifera.
Channels (Austin). 2025 Dec;19(1):2529250. doi: 10.1080/19336950.2025.2529250. Epub 2025 Jul 10.
2
ClC-K Kidney Chloride Channels: From Structure to Pathology.
Handb Exp Pharmacol. 2024;283:35-58. doi: 10.1007/164_2023_635.
3
Special collection on inward rectifying K channels.
Am J Physiol Cell Physiol. 2023 Mar 1;324(3):C603-C605. doi: 10.1152/ajpcell.00457.2022. Epub 2023 Jan 23.
4
VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels.
Mol Pharmacol. 2022 May;101(5):357-370. doi: 10.1124/molpharm.121.000464. Epub 2022 Mar 3.
5
Phylogenomics of Tick Inward Rectifier Potassium Channels and Their Potential as Targets to Innovate Control Technologies.
Front Cell Infect Microbiol. 2021 Mar 19;11:647020. doi: 10.3389/fcimb.2021.647020. eCollection 2021.
6
Complementary computational and experimental evaluation of missense variants in the ROMK potassium channel.
PLoS Comput Biol. 2020 Apr 6;16(4):e1007749. doi: 10.1371/journal.pcbi.1007749. eCollection 2020 Apr.
7
AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport.
Int J Mol Sci. 2018 Nov 6;19(11):3481. doi: 10.3390/ijms19113481.
9
A selective class of inhibitors for the CLC-Ka chloride ion channel.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4900-E4909. doi: 10.1073/pnas.1720584115. Epub 2018 Apr 18.
10
Discovery and in Vitro Optimization of 3-Sulfamoylbenzamides as ROMK Inhibitors.
ACS Med Chem Lett. 2018 Jan 19;9(2):125-130. doi: 10.1021/acsmedchemlett.7b00481. eCollection 2018 Feb 8.

本文引用的文献

1
Discovery of Selective Small Molecule ROMK Inhibitors as Potential New Mechanism Diuretics.
ACS Med Chem Lett. 2012 Mar 28;3(5):367-72. doi: 10.1021/ml3000066. eCollection 2012 May 10.
2
Hereditary causes of kidney stones and chronic kidney disease.
Pediatr Nephrol. 2013 Oct;28(10):1923-42. doi: 10.1007/s00467-012-2329-z. Epub 2013 Jan 20.
3
The CLC-5 2Cl(-)/H(+) exchange transporter in endosomal function and Dent's disease.
Front Physiol. 2012 Nov 30;3:449. doi: 10.3389/fphys.2012.00449. eCollection 2012.
4
A designed inhibitor of a CLC antiporter blocks function through a unique binding mode.
Chem Biol. 2012 Nov 21;19(11):1460-70. doi: 10.1016/j.chembiol.2012.09.017.
5
Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels.
J Gen Physiol. 2012 Dec;140(6):681-96. doi: 10.1085/jgp.201210878. Epub 2012 Nov 12.
6
Tolvaptan in patients with autosomal dominant polycystic kidney disease.
N Engl J Med. 2012 Dec 20;367(25):2407-18. doi: 10.1056/NEJMoa1205511. Epub 2012 Nov 3.
7
Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport.
Physiol Rev. 2012 Oct;92(4):1577-617. doi: 10.1152/physrev.00009.2012.
8
SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner.
J Biol Chem. 2012 Nov 2;287(45):37673-90. doi: 10.1074/jbc.M112.402800. Epub 2012 Sep 12.
9
Structure-activity relationship of fenamates as Slo2.1 channel activators.
Mol Pharmacol. 2012 Nov;82(5):795-802. doi: 10.1124/mol.112.079194. Epub 2012 Jul 31.
10
Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure.
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13368-73. doi: 10.1073/pnas.1202671109. Epub 2012 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验