Suppr超能文献

互补的计算和实验评估错义变体在 ROMK 钾通道。

Complementary computational and experimental evaluation of missense variants in the ROMK potassium channel.

机构信息

Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2020 Apr 6;16(4):e1007749. doi: 10.1371/journal.pcbi.1007749. eCollection 2020 Apr.

Abstract

The renal outer medullary potassium (ROMK) channel is essential for potassium transport in the kidney, and its dysfunction is associated with a salt-wasting disorder known as Bartter syndrome. Despite its physiological significance, we lack a mechanistic understanding of the molecular defects in ROMK underlying most Bartter syndrome-associated mutations. To this end, we employed a ROMK-dependent yeast growth assay and tested single amino acid variants selected by a series of computational tools representative of different approaches to predict each variants' pathogenicity. In one approach, we used in silico saturation mutagenesis, i.e. the scanning of all possible single amino acid substitutions at all sequence positions to estimate their impact on function, and then employed a new machine learning classifier known as Rhapsody. We also used two additional tools, EVmutation and Polyphen-2, which permitted us to make consensus predictions on the pathogenicity of single amino acid variants in ROMK. Experimental tests performed for selected mutants in different classes validated the vast majority of our predictions and provided insights into variants implicated in ROMK dysfunction. On a broader scope, our analysis suggests that consolidation of data from complementary computational approaches provides an improved and facile method to predict the severity of an amino acid substitution and may help accelerate the identification of disease-causing mutations in any protein.

摘要

肾脏外髓质钾 (ROMK) 通道对于肾脏中的钾转运至关重要,其功能障碍与一种称为巴特综合征的盐耗性疾病有关。尽管它具有生理意义,但我们缺乏对大多数巴特综合征相关突变中 ROMK 分子缺陷的机制理解。为此,我们采用了一种依赖 ROMK 的酵母生长测定法,并测试了一系列计算工具选择的单个氨基酸变异体,这些工具代表了预测每个变异体致病性的不同方法。在一种方法中,我们使用了计算机饱和诱变,即在所有序列位置上扫描所有可能的单个氨基酸取代,以估计它们对功能的影响,然后使用一种称为 Rhapsody 的新机器学习分类器。我们还使用了另外两种工具,EVmutation 和 Polyphen-2,这使我们能够对 ROMK 中单个氨基酸变异体的致病性做出共识预测。在不同类别中对选定突变体进行的实验测试验证了我们的绝大多数预测,并深入了解了与 ROMK 功能障碍相关的变异体。从更广泛的角度来看,我们的分析表明,整合来自互补计算方法的数据提供了一种改进和简便的方法来预测氨基酸取代的严重程度,并可能有助于加速任何蛋白质中致病突变的鉴定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验