Suppr超能文献

将回缩建模集成到基于图谱的脑移位预测框架中。

Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction.

作者信息

Chen Ishita, Ong Rowena E, Simpson Amber L, Sun Kay, Thompson Reid C, Miga Michael I

出版信息

IEEE Trans Biomed Eng. 2013 Dec;60(12):3494-504. doi: 10.1109/TBME.2013.2272658. Epub 2013 Jul 10.

Abstract

In recent work, an atlas-based statistical model for brain shift prediction, which accounts for uncertainty in the intraoperative environment, has been proposed. Previous work reported in the literature using this technique did not account for local deformation caused by surgical retraction. It is challenging to precisely localize the retractor location prior to surgery and the retractor is often moved in the course of the procedure. This paper proposes a technique that involves computing the retractor-induced brain deformation in the operating room through an active model solve and linearly superposing the solution with the precomputed deformation atlas. As a result, the new method takes advantage of the atlas-based framework's accounting for uncertainties while also incorporating the effects of retraction with minimal intraoperative computing. This new approach was tested using simulation and phantom experiments. The results showed an improvement in average shift correction from 50% (ranging from 14 to 81%) for gravity atlas alone to 80% using the active solve retraction component (ranging from 73 to 85%). This paper presents a novel yet simple way to integrate retraction into the atlas-based brain shift computation framework.

摘要

在最近的工作中,已经提出了一种基于图谱的脑移位预测统计模型,该模型考虑了术中环境的不确定性。文献中报道的使用该技术的先前工作没有考虑手术牵拉引起的局部变形。在手术前精确确定牵开器的位置具有挑战性,并且牵开器在手术过程中经常移动。本文提出了一种技术,该技术涉及通过主动模型求解在手术室中计算牵开器引起的脑变形,并将该解与预先计算的变形图谱进行线性叠加。结果,新方法利用了基于图谱的框架对不确定性的考虑,同时还以最少的术中计算纳入了牵拉的影响。这种新方法通过模拟和体模实验进行了测试。结果表明,平均移位校正从仅使用重力图谱时的50%(范围为14%至81%)提高到使用主动求解牵拉分量时的80%(范围为73%至85%)。本文提出了一种新颖而简单的方法,将牵拉整合到基于图谱的脑移位计算框架中。

相似文献

1
Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction.
IEEE Trans Biomed Eng. 2013 Dec;60(12):3494-504. doi: 10.1109/TBME.2013.2272658. Epub 2013 Jul 10.
2
Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases.
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1467-74. doi: 10.1007/s11548-015-1295-x. Epub 2015 Oct 17.
3
3D XFEM-based modeling of retraction for preoperative image update.
Comput Aided Surg. 2011;16(3):121-34. doi: 10.3109/10929088.2011.570090.
4
Intraoperative brain shift compensation: accounting for dural septa.
IEEE Trans Biomed Eng. 2011 Mar;58(3):499-508. doi: 10.1109/TBME.2010.2093896. Epub 2010 Nov 22.
5
Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
Int J Comput Assist Radiol Surg. 2015 Nov;10(11):1753-64. doi: 10.1007/s11548-015-1216-z. Epub 2015 May 10.
6
A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner.
Int J Comput Assist Radiol Surg. 2014 Jul;9(4):669-81. doi: 10.1007/s11548-013-0958-8. Epub 2013 Nov 30.
8
Anticipation of brain shift in Deep Brain Stimulation automatic planning.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:3635-8. doi: 10.1109/EMBC.2015.7319180.
9
Fast and adaptive finite element approach for modeling brain shift.
Comput Aided Surg. 2003;8(5):241-6. doi: 10.3109/10929080309146059.
10
An atlas-based method to compensate for brain shift: preliminary results.
Med Image Anal. 2007 Apr;11(2):128-45. doi: 10.1016/j.media.2006.11.002. Epub 2007 Mar 1.

引用本文的文献

1
Computational Imaging to Compensate for Soft-Tissue Deformations in Image-Guided Breast Conserving Surgery.
IEEE Trans Biomed Eng. 2022 Dec;69(12):3760-3771. doi: 10.1109/TBME.2022.3177044. Epub 2022 Nov 23.
2
Retrospective study comparing model-based deformation correction to intraoperative magnetic resonance imaging for image-guided neurosurgery.
J Med Imaging (Bellingham). 2017 Jul;4(3):035003. doi: 10.1117/1.JMI.4.3.035003. Epub 2017 Sep 13.
3
Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery.
Int J Biomed Imaging. 2017;2017:6028645. doi: 10.1155/2017/6028645. Epub 2017 Jun 5.
4
Android application for determining surgical variables in brain-tumor resection procedures.
J Med Imaging (Bellingham). 2017 Jan;4(1):015003. doi: 10.1117/1.JMI.4.1.015003. Epub 2017 Mar 2.
5
Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.
Ann Biomed Eng. 2016 Jan;44(1):128-38. doi: 10.1007/s10439-015-1433-1. Epub 2015 Sep 9.
6
Toward a generic real-time compression correction framework for tracked ultrasound.
Int J Comput Assist Radiol Surg. 2015 Nov;10(11):1777-92. doi: 10.1007/s11548-015-1210-5. Epub 2015 Apr 23.

本文引用的文献

1
Intraoperative brain shift compensation: accounting for dural septa.
IEEE Trans Biomed Eng. 2011 Mar;58(3):499-508. doi: 10.1109/TBME.2010.2093896. Epub 2010 Nov 22.
3
On the unimportance of constitutive models in computing brain deformation for image-guided surgery.
Biomech Model Mechanobiol. 2009 Feb;8(1):77-84. doi: 10.1007/s10237-008-0118-1. Epub 2008 Feb 2.
4
An atlas-based method to compensate for brain shift: preliminary results.
Med Image Anal. 2007 Apr;11(2):128-45. doi: 10.1016/j.media.2006.11.002. Epub 2007 Mar 1.
5
Intraoperative cortical surface characterization using laser range scanning: preliminary results.
Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS368-76; discussion ONS376-7. doi: 10.1227/01.NEU.0000222665.40301.D2.
6
Patient-specific model of brain deformation: application to medical image registration.
J Biomech. 2007;40(4):919-29. doi: 10.1016/j.jbiomech.2006.02.021. Epub 2006 May 6.
7
Robust nonrigid registration to capture brain shift from intraoperative MRI.
IEEE Trans Med Imaging. 2005 Nov;24(11):1417-27. doi: 10.1109/TMI.2005.856734.
8
A method to track cortical surface deformations using a laser range scanner.
IEEE Trans Med Imaging. 2005 Jun;24(6):767-81. doi: 10.1109/TMI.2005.848373.
9
Cortical surface tracking using a stereoscopic operating microscope.
Neurosurgery. 2005 Jan;56(1 Suppl):86-97; discussion 86-97. doi: 10.1227/01.neu.0000146263.98583.cc.
10
Brain shift estimation in image-guided neurosurgery using 3-D ultrasound.
IEEE Trans Biomed Eng. 2005 Feb;52(2):268-76. doi: 10.1109/TBME.2004.840186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验