From the Department of Biochemistry and Molecular Biology,; Sealy Center for Structural Biology and Molecular Biophysics, and.
From the Department of Biochemistry and Molecular Biology.
J Biol Chem. 2013 Aug 30;288(35):25143-25153. doi: 10.1074/jbc.M113.492579. Epub 2013 Jul 17.
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of "active" chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.
糖胺聚糖 (GAG)-结合和可溶趋化因子梯度在血管和细胞外基质中调节中性粒细胞向微生物感染和宿主组织中无菌损伤部位的募集。然而,趋化因子-GAG 相互作用协调这些梯度的分子原理还知之甚少。这在一定程度上可以直接归因于趋化因子单体-二聚体平衡与结合几何形状和亲和力之间的复杂相互关系,这些关系也与 GAG 长度密切相关。为了解决一些缺失的知识,我们已经确定了肝素与小鼠 CXCL1 二聚体结合的结构基础。CXCL1 是一种激活中性粒细胞的趋化因子,既可以作为单体存在,也可以作为二聚体存在(Kd = 36 μm)。为了避免单体-GAG 相互作用的干扰,我们通过在二聚体界面上引入二硫键设计了一种被捕获的二聚体 (dCXCL1)。我们使用溶液 NMR 光谱法研究了 GAG 肝素八聚糖与 dCXCL1 的结合。我们的研究表明,八聚糖垂直结合在螺旋间轴上并跨越二聚体界面,肝素结合增强了 C 末端螺旋残基的结构完整性和二聚体的稳定性。我们根据结合数据生成了一个四重突变体 (H20A/K22A/K62A/K66A),并观察到该突变体无法结合肝素八聚糖,验证了我们的结构模型。我们提出,GAG 结合后二聚体稳定性的增强通过增加“活性”趋化因子的寿命来调节体内中性粒细胞的迁移,并且这种结构知识可以被用于设计破坏趋化因子-GAG 相互作用和中性粒细胞向靶组织归巢的抑制剂。