Suppr超能文献

化学趋化因子 KC 和 MIP2 与糖胺聚糖肝素结合的结构基础、化学计量和热力学。

Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin.

机构信息

From the Departments of Biochemistry and Molecular Biology; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555.

Department of Medicinal Chemistry and Institute for Structural Biology, and Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219.

出版信息

J Biol Chem. 2018 Nov 16;293(46):17817-17828. doi: 10.1074/jbc.RA118.004866. Epub 2018 Sep 26.

Abstract

Keratinocyte-derived chemokine (KC or mCXCL1) and macrophage inflammatory protein 2 (MIP2 or mCXCL2) play nonredundant roles in trafficking blood neutrophils to sites of infection and injury. The functional responses of KC and MIP2 are intimately coupled to their interactions with glycosaminoglycans (GAGs). GAG interactions orchestrate chemokine concentration gradients and modulate receptor activity, which together regulate neutrophil trafficking. Here, using NMR, molecular dynamics (MD) simulations, and isothermal titration calorimetry (ITC), we characterized the molecular basis of KC and MIP2 binding to the GAG heparin. Both chemokines reversibly exist as monomers and dimers, and the NMR analysis indicates that the dimer binds heparin with higher affinity. The ITC experiments indicate a stoichiometry of two GAGs per KC or MIP2 dimer and that the enthalpic and entropic contributions vary significantly between the two chemokine-heparin complexes. NMR-based structural models of heparin-KC and heparin-MIP2 complexes reveal that different combinations of residues from the N-loop, 40s turn, β-strand, and C-terminal helix form a binding surface within a monomer and that both conserved residues and residues unique to a particular chemokine mediate the binding interactions. MD simulations indicate significant residue-specific differences in their contribution to binding and affinity for a given chemokine and between chemokines. On the basis of our observations that KC and MIP2 bind to GAG via distinct molecular interactions, we propose that the differences in these GAG interactions lead to differences in neutrophil recruitment and play nonoverlapping roles in resolution of inflammation.

摘要

角质形成细胞衍生的趋化因子(KC 或 mCXCL1)和巨噬细胞炎症蛋白 2(MIP2 或 mCXCL2)在将血液中性粒细胞运送到感染和损伤部位方面发挥着非冗余的作用。KC 和 MIP2 的功能反应与其与糖胺聚糖(GAG)的相互作用密切相关。GAG 相互作用协调趋化因子浓度梯度并调节受体活性,共同调节中性粒细胞的迁移。在这里,我们使用 NMR、分子动力学(MD)模拟和等温滴定量热法(ITC),表征了 KC 和 MIP2 与 GAG 肝素结合的分子基础。两种趋化因子均可可逆地存在于单体和二聚体中,NMR 分析表明二聚体与肝素的结合亲和力更高。ITC 实验表明,每个 KC 或 MIP2 二聚体与两个 GAG 的计量比,并且两个趋化因子-肝素复合物之间的焓和熵贡献差异很大。基于 NMR 的肝素-KC 和肝素-MIP2 复合物的结构模型表明,来自 N 环、40s 转角、β-链和 C 末端螺旋的不同残基组合在单体中形成一个结合表面,并且保守残基和特定于特定趋化因子的残基都介导结合相互作用。MD 模拟表明,在结合和对给定趋化因子的亲和力方面,以及在趋化因子之间,存在明显的残基特异性差异。根据我们观察到 KC 和 MIP2 通过不同的分子相互作用与 GAG 结合的情况,我们提出这些 GAG 相互作用的差异导致中性粒细胞募集的差异,并在炎症消退中发挥非重叠的作用。

相似文献

1
Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin.
J Biol Chem. 2018 Nov 16;293(46):17817-17828. doi: 10.1074/jbc.RA118.004866. Epub 2018 Sep 26.
2
Structural basis of a chemokine heterodimer binding to glycosaminoglycans.
Biochem J. 2021 Mar 12;478(5):1009-1021. doi: 10.1042/BCJ20200927.
3
Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions.
J Biol Chem. 2016 Sep 23;291(39):20539-50. doi: 10.1074/jbc.M116.745265. Epub 2016 Jul 28.
4
Neutrophil recruitment by chemokines Cxcl1/KC and Cxcl2/MIP2: Role of Cxcr2 activation and glycosaminoglycan interactions.
J Leukoc Biol. 2021 Apr;109(4):777-791. doi: 10.1002/JLB.3A0820-207R. Epub 2020 Sep 2.
5
Molecular basis of glycosaminoglycan heparin binding to the chemokine CXCL1 dimer.
J Biol Chem. 2013 Aug 30;288(35):25143-25153. doi: 10.1074/jbc.M113.492579. Epub 2013 Jul 17.
8
Kinetics of chemokine-glycosaminoglycan interactions control neutrophil migration into the airspaces of the lungs.
J Immunol. 2010 Mar 1;184(5):2677-85. doi: 10.4049/jimmunol.0903274. Epub 2010 Feb 1.

引用本文的文献

1
Alteration of Neuropilin-1 and Heparan Sulfate Interaction Impairs Murine B16 Tumor Growth.
ACS Chem Biol. 2024 Aug 16;19(8):1820-1835. doi: 10.1021/acschembio.4c00389. Epub 2024 Aug 4.
2
Benchmarking Water Models in Molecular Dynamics of Protein-Glycosaminoglycan Complexes.
J Chem Inf Model. 2024 Mar 11;64(5):1691-1703. doi: 10.1021/acs.jcim.4c00030. Epub 2024 Feb 27.
3
Studying specificity in protein-glycosaminoglycan recognition with umbrella sampling.
Beilstein J Org Chem. 2023 Dec 19;19:1933-1946. doi: 10.3762/bjoc.19.144. eCollection 2023.
4
CXCR2 chemokine receptor - a master regulator in cancer and physiology.
Trends Mol Med. 2024 Jan;30(1):37-55. doi: 10.1016/j.molmed.2023.09.003. Epub 2023 Oct 21.
5
Chemokine Cxcl1-Cxcl2 heterodimer is a potent neutrophil chemoattractant.
J Leukoc Biol. 2023 Nov 24;114(6):666-671. doi: 10.1093/jleuko/qiad097.
6
Solvent Model Benchmark for Molecular Dynamics of Glycosaminoglycans.
J Chem Inf Model. 2023 Apr 10;63(7):2147-2157. doi: 10.1021/acs.jcim.2c01472. Epub 2023 Mar 29.
8
Molecular dynamics simulations to understand glycosaminoglycan interactions in the free- and protein-bound states.
Curr Opin Struct Biol. 2022 Jun;74:102356. doi: 10.1016/j.sbi.2022.102356. Epub 2022 Mar 17.
9
Aqueous Molecular Dynamics for Understanding Glycosaminoglycan Recognition by Proteins.
Methods Mol Biol. 2022;2303:49-62. doi: 10.1007/978-1-0716-1398-6_5.

本文引用的文献

1
So you think computational approaches to understanding glycosaminoglycan-protein interactions are too dry and too rigid? Think again!
Curr Opin Struct Biol. 2018 Jun;50:91-100. doi: 10.1016/j.sbi.2017.12.004. Epub 2018 Jan 9.
2
Glycosaminoglycan Interactions Fine-Tune Chemokine-Mediated Neutrophil Trafficking: Structural Insights and Molecular Mechanisms.
J Histochem Cytochem. 2018 Apr;66(4):229-239. doi: 10.1369/0022155417739864. Epub 2018 Jan 1.
7
The structural investigation of glycosaminoglycan binding to CXCL12 displays distinct interaction sites.
Glycobiology. 2016 Nov;26(11):1209-1221. doi: 10.1093/glycob/cww059. Epub 2016 Jun 24.
8
Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions.
J Biol Chem. 2016 Sep 23;291(39):20539-50. doi: 10.1074/jbc.M116.745265. Epub 2016 Jul 28.
10
The sweet spot: how GAGs help chemokines guide migrating cells.
J Leukoc Biol. 2016 Jun;99(6):935-53. doi: 10.1189/jlb.3MR0915-440R. Epub 2015 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验