Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Road 5268, Changchun, Jilin 130024, P. R. China.
J Phys Chem A. 2013 Aug 1;117(30):6629-40. doi: 10.1021/jp402142b. Epub 2013 Jul 18.
The complex potential energy surface of allyl alcohol (CH2CHCH2OH) with hydroxyl radical (OH) has been investigated at the G3(MP2)//MP2/6-311++G(d,p) level. On the surface, two kinds of pathways are revealed, namely, direct hydrogen abstraction and addition/elimination. Rice-Ramsperger-Kassel-Marcus theory and transition state theory are carried out to calculate the total and individual rate constants over a wide temperature and pressure region with tunneling correction. It is predicted that CH2CHOHCH2OH (IM1) formed by collisional stabilization is dominate in the temperature range (200-440 K) at atmospheric pressure with N2 (200-315 K at 10 Torr Ar and 100 Torr He). The production of CH2CHCHOH + H2O via direct hydrogen abstraction becomes dominate at higher temperature. The kinetic isotope effect (KIE) has also been calculated for the title reaction. Moreover, the calculated rate constants and KIE are in good agreement with the experimental data.
烯丙醇(CH2CHCH2OH)与羟基自由基(OH)的复势能面在 G3(MP2)//MP2/6-311++G(d,p)水平上进行了研究。在该表面上,揭示了两种途径,即直接氢提取和加成/消除。通过过渡态理论和 Rice-Ramsperger-Kassel-Marcus 理论,在考虑隧道效应校正的情况下,计算了在宽温度和压力范围内的总和各向同性速率常数。预测在常压下(200-440 K),通过碰撞稳定化形成的 CH2CHOHCH2OH(IM1)占主导地位,而在 N2 中(200-315 K 在 10 Torr Ar 和 100 Torr He 中)。在较高温度下,通过直接氢提取生成 CH2CHCHOH + H2O 成为主导。还计算了标题反应的动力学同位素效应(KIE)。此外,计算的速率常数和 KIE与实验数据吻合良好。