Peticolas W L
Biochimie. 1975;57(4):417-28. doi: 10.1016/s0300-9084(75)80328-2.
The Raman spectra of biological macromolecules arise from molecular vibrations of either the backbone chains or the side chains. The frequencies of the Raman bands lie in a region between 200 cm-1 and 3000 cm-1. From certain frequencies of the vibrations of the backbone chains one can determine the conformation or secondary structure of a macromolecule. Thus for polypeptides and proteins the frequencies of the Amide I and Amide III vibrations allow one to determine the averge conformation of their backbone chain. In polynucleotides and nucleic acids, the frequency of the phosphate diester stretch of the phosphate furanose chain varies between 814 cm-1 for A conformation and 790 cm-1 for B conformation. Raman spectra of the bases in nucleic acids can be used to determine base stacking and hydrogen bonding interactions. Thus Raman spectroscopy is an important tool for determining the conformation structure of proteins and nucleic acids.
生物大分子的拉曼光谱源于主链或侧链的分子振动。拉曼谱带的频率位于200厘米-1至3000厘米-1之间的区域。从主链振动的某些频率可以确定大分子的构象或二级结构。因此,对于多肽和蛋白质,酰胺I和酰胺III振动的频率可以让人确定其主链的平均构象。在多核苷酸和核酸中,磷酸呋喃糖链的磷酸二酯伸缩振动频率在A构象时为814厘米-1,在B构象时为790厘米-1。核酸中碱基的拉曼光谱可用于确定碱基堆积和氢键相互作用。因此,拉曼光谱是确定蛋白质和核酸构象结构的重要工具。